多目标跟踪

多目标跟踪(Multi-Object Tracking,MOT)是计算机视觉中的一个核心任务,目标是在视频序列中同时检测、跟踪多个目标(如人、车辆、动物等),并为每个目标分配一个持续不变的ID,保持其轨迹连贯。

一、基本流程

视频帧序列 → 目标检测 → 目标匹配/关联 → 分配/更新轨迹ID → 输出跟踪结果

具体流程如下:

  1. 目标检测(Object Detection)

    每帧图像检测出所有目标框(bounding boxes);常用模型:YOLOv5/v8、Faster-RCNN、SSD、Mask-RCNN
  2. 目标关联(Data Association)

    将当前帧检测到的目标与前一帧中已跟踪的目标进行匹配;使用距离、特征相似性、IoU等策略
  3. 轨迹维护(Track Management)

    分配ID、新增轨迹、丢失目标删除ID

二、常用多目标跟踪算法分类

1. 基于检测器和关联器(Tracking-by-Detection)

大多数现代方法采用该策略。

代表算法:
算法特点
SORT基于卡尔曼滤波 + IoU 匹配,快速、简单
DeepSORTSORT + 外观特征(CNN),更鲁棒
ByteTrack弱检测也能有效关联,效果突出
StrongSORTDeepSORT 改进版,更强外观建模
FairMOT检测和 ReID 同时训练,端到端

2. 基于端到端深度学习(Detection-Free)

模型特点
CenterTrack用中心点预测+offset建模运动
TrackFormer使用 Transformer 建模目标间关系
TransTrack用 query 跟踪目标,类似 DETR

三、DeepSORT 结构简要说明

YOLOv5 → 检测框 → 提取外观特征(CNN) → 卡尔曼滤波预测 → 匹配→ ID更新

数据关联:

  • 用马氏距离匹配轨迹预测位置

  • 若有 ReID 外观特征,再用 cosine 距离辅助匹配

四、实用代码示例:YOLOv5 + DeepSORT

以视频为输入,实现行人跟踪:

from deep_sort_realtime.deepsort_tracker import DeepSort
import cv2
import torch

# 初始化检测器(YOLO)
model = torch.hub.load('ultralytics/yolov5', 'yolov5s', pretrained=True)
model.classes = [0]  # 只检测人类(COCO class 0)

# 初始化 DeepSORT
tracker = DeepSort(max_age=30)

# 打开视频
cap = cv2.VideoCapture("people.mp4")

while cap.isOpened():
    ret, frame = cap.read()
    if not ret:
        break

    results = model(frame)
    detections = results.xyxy[0].cpu().numpy()

    tracks = []
    for *xyxy, conf, cls in detections:
        x1, y1, x2, y2 = map(int, xyxy)
        tracks.append(([x1, y1, x2 - x1, y2 - y1], conf, 'person'))

    tracked_objects = tracker.update_tracks(tracks, frame=frame)

    for t in tracked_objects:
        if not t.is_confirmed():
            continue
        x, y, w, h = map(int, t.to_ltrb())
        id = t.track_id
        cv2.rectangle(frame, (x, y), (x + w, y + h), (0, 255, 0), 2)
        cv2.putText(frame, f"ID {id}", (x, y - 10),
                    cv2.FONT_HERSHEY_SIMPLEX, 0.5, (0, 255, 0), 1)

    cv2.imshow("Tracking", frame)
    if cv2.waitKey(1) & 0xFF == ord("q"):
        break

cap.release()
cv2.destroyAllWindows()

五、评估指标

指标含义
MOTA(多目标准确率)综合错误,包括漏检、误检、ID切换
IDF1ID 匹配的 F1 分数,衡量一致性
HOTA综合精度与关联质量
FPS跟踪速度

六、常用数据集

  • MOT17 / MOT20:城市街景多行人跟踪

  • HiEve / DanceTrack:人群或群体跟踪

  • UA-DETRAC:车辆多目标跟踪

七、扩展应用

  • 行人重识别(ReID)

  • 行为识别 + 跟踪

  • 交通流分析

  • 安全监控系统

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

00&00

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值