在多目标跟踪(Multi-Object Tracking, MOT)中,运动模型(Motion Model)用于预测目标在当前帧的位置,即在新图像到来之前,基于历史轨迹对目标进行“推测”。这一步是数据关联的重要组成部分。
一、什么是运动模型?
运动模型是一个基于时间序列的目标位置预测方法。它尝试基于目标的历史状态(如位置、速度)来预测其在下一帧中的位置。
常见形式:
位置(t) + 速度 → 预测位置(t+1)
二、常用运动模型类型
一、匀速直线模型(Constant Velocity)
假设目标做匀速运动:
优点:
-
简单快速,适合静态摄像头、缓慢移动的目标
-
多用于初始版本的跟踪器,如 SORT
二、卡尔曼滤波(Kalman Filter)
一种线性高斯滤波器,用来估计目标的状态(位置、速度)并不断更新:
-
状态变量:
-
[x, y, dx, dy]
(位置和速度)
-
-
两步:
-
预测(predict)
-
更新(update)
-
适用场景:
-
目标短期运动平稳、遮挡少
-
DeepSORT、ByteTrack 等常用
PyTorch/NumPy 简化实现:
from filterpy.kalman import KalmanFilter
kf = KalmanFilter(dim_x=4, dim_z=2)
kf.x = [x, y, dx, dy] # 初始化位置速度
kf.predict()
kf.update(measured_position)
三、扩展卡尔曼滤波(EKF)/无迹卡尔曼滤波(UKF)
-
适合非线性运动(如曲线运动)
-
处理更加复杂,但常见于目标跟踪精度要求更高的系统(如雷达)
四、匀加速模型(Constant Acceleration)
-
假设目标具有加速度
适用于:
-
体育比赛、高速交通目标跟踪
五、粒子滤波(Particle Filter)
-
使用随机采样(粒子)估计目标状态分布
-
能处理非线性、非高斯问题
适用于:
-
多遮挡、非规则路径下目标的轨迹预测
-
无法用高斯建模的复杂环境
三、运动模型在 MOT 中的作用
功能 | 作用说明 |
---|---|
预测下一个位置 | 即使目标当前帧丢失,也能尝试“预估”其位置 |
降低匹配成本 | 为数据关联提供参考区域,减少搜索空间 |
轨迹平滑 | 提高检测鲁棒性,过滤短时噪声 |
四、与外观模型的配合
实际跟踪中,运动模型和外观模型通常联合使用:
模型类型 | 功能 |
---|---|
运动模型 | 预测位置(如 Kalman) |
外观模型 | 比较目标图像特征(如 DeepSORT 的 CNN) |
融合方法:
-
线性组合距离度量(如马氏距离 + 外观 cosine 距离)
五、动手示例:Kalman 运动预测
from filterpy.kalman import KalmanFilter
import numpy as np
kf = KalmanFilter(dim_x=4, dim_z=2)
kf.F = np.array([[1, 0, 1, 0],
[0, 1, 0, 1],
[0, 0, 1, 0],
[0, 0, 0, 1]]) # 状态转移矩阵
kf.H = np.array([[1, 0, 0, 0],
[0, 1, 0, 0]]) # 测量矩阵
kf.x = np.array([400, 300, 0, 0]) # 初始位置
kf.P *= 1000. # 协方差
# 预测下一位置
kf.predict()
pred = kf.x[:2]
print("Predicted:", pred)
# 模拟观测更新
measured = np.array([402, 301])
kf.update(measured)
print("Updated:", kf.x[:2])
六、结语
模型 | 适合场景 | 优点 | 缺点 |
---|---|---|---|
匀速 | 简单场景 | 快速、实现容易 | 不鲁棒 |
Kalman | 常规视频MOT | 精度较高、可更新 | 对遮挡敏感 |
粒子滤波 | 高遮挡、非线性 | 鲁棒性高 | 速度慢 |
加速度模型 | 快速运动目标 | 更真实建模 | 参数复杂 |