夜深人静写算法(十四)- 0/1 背包

本文详细介绍了动态规划中的0/1背包问题,包括问题描述、状态设计、状态转移方程、初始状态、非法状态、状态初始化、问题实现以及空间优化。通过对经典例题的解析,阐述了动态规划的核心思路,即设计合理状态和状态转移方程,以解决0/1背包问题。此外,还讨论了问题的扩展思考,如最大值、最小值、存在性、方案数等问题,以及如何进行空间优化,如滚动数组和降维思想的应用。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

一、前言

  动态规划(Dynamic Programming)是一种系统思维,如果挑着看会觉得很难,因为变种太多,比如背包问题、状态压缩DP、线性DP、树形DP、区间DP、斜率DP、插头DP,但是核心思路是一样的,就是设计出合理的状态和状态转移方程,从而通过迭代或者递归的方式求出最终问题的解。
  为了更加系统的讲解动态规划,作者整理了一些以前记录的笔记,从最简单的 0/1 背包问题开始讲起,将状态和状态转移的的概念分析透彻后,再由浅入深,进军更加复杂的动态规划问题。
  学习动态规划的时候,感触最深的就是:“哇靠!这怎么能想到的?” ,动态规划的问题编码也许很简单,但是状态的设计可能要想半天,一旦想出来了,就会有一种醍醐灌顶的感觉,这或许就是它的魅力所在吧。

二、0/1 背包问题

【例题1】有 n ( n ≤ 100 ) n(n \le100)

评论 5
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

英雄哪里出来

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值