前言
上一篇文章 「 二叉搜索树 」 中,对于 「 增 」「 删 」「 改 」「 查 」 的时间复杂度为 O ( l o g 2 n ) O(log_2n) O(log2n) ~ O ( n ) O(n) O(n)。原因是最坏情况下,二叉搜索树会退化成 「 线性表 」 。更加确切地说,树的高度决定了它插入、删除和查找的时间复杂度。
本文,我们就来聊一下一种高度始终能够接近 O ( l o g 2 n ) O(log_2n) O(log2<
上一篇文章 「 二叉搜索树 」 中,对于 「 增 」「 删 」「 改 」「 查 」 的时间复杂度为 O ( l o g 2 n ) O(log_2n) O(log2n) ~ O ( n ) O(n) O(n)。原因是最坏情况下,二叉搜索树会退化成 「 线性表 」 。更加确切地说,树的高度决定了它插入、删除和查找的时间复杂度。
本文,我们就来聊一下一种高度始终能够接近 O ( l o g 2 n ) O(log_2n) O(log2<