这篇论文提出了一个名为 RobustAPI 的新基准测试,旨在评估大型语言模型(LLMs)生成代码时的 API 误用行为。以下是对论文内容的总结:
-
背景与动机:随着大型语言模型在编程领域的应用日益增多,它们生成的代码的可靠性和鲁棒性成为了关键问题。尽管这些模型能够生成语法正确的代码,但它们在实际软件开发中可能不够可靠,尤其是在 API 使用方面。
-
RobustAPI 基准测试:作者创建了 RobustAPI,一个包含 1208 个 Stack Overflow 上的问题和相关 Java API 的数据集,用以评估 LLMs 生成的代码的可靠性和鲁棒性。
-
实验设置:论文中对几个主流的 LLMs(包括 GPT-3.5、GPT-4、Llama-2 和 Vicuna-1.5)进行了评估,考虑了零样本、单不相关样本和单相关样本三种实验设置。
-
评估方法:使用静态分析方法,特别是基于抽象语法树(AST)的技术,来检测代码中的 API 误用。
-
主要发现:
<