Does Data Contamination Detection Work (Well) for LLMs? A Survey and Evaluation on Detection Assumptions
https://arxiv.org/pdf/2410.18966
数据污染检测对大型语言模型(LLMs)是否有效?一项关于检测假设的调查与评估
摘要
大型语言模型(LLMs)在各种基准测试中展现出了卓越的性能,显示出作为通用任务解决者的潜力。然而,由于LLMs通常在大量数据上进行训练,评估它们时一个重要的问题是数据污染,即训练数据与评估数据集之间的重叠会夸大性能评估。虽然已经开发了多种方法来识别数据污染,但这些方法依赖于可能在不同设置中并不普遍适用的特定假设。为了弥补这一差距,我们系统性地回顾了47篇关于数据污染检测的论文,对底层假设进行分类,并评估它们是否经过了严格的验证。我们识别并分析了八类假设,并以三个案例研究测试了其中的三个。我们的分析揭示了,在对用于预训练LLMs的实例进行分类时,基于这三个假设的检测方法的表现接近随机猜测,这表明当前的LLMs学习的是数据分布而不是记忆个别实例。总体而言,这项工作强调了方法明确陈述其底层假设并在不同场景下测试其有效性的重要性。
1 引言
大型语言模型(LLMs)在各种基准测试中取得了显著的性能,预示着它们有可能作为通用问题