论文阅读:arxiv 2025 FRABench and GenEval: Scaling Fine-Grained Aspect Evaluation across Tasks, Modalitie

FRABench and GenEval: Scaling Fine-Grained Aspect Evaluation across Tasks, Modalities

https://arxiv.org/pdf/2505.12795

https://www.doubao.com/chat/12326095885366530

在这里插入图片描述

论文速览

这篇文档主要讲了研究人员为了解决大型语言模型(LLMs)输出结果的评估难题,做了三项重要工作。

首先,他们构建了一个包含112个不同评估维度的层级分类体系(维度树)。这个体系能统一自然语言生成、图像理解、图像生成和文本与图像交错生成这四种任务的评估,就像一个通用的“评估字典”,让评估者能根据具体任务和场景从中挑选合适的评估维度。

其次,基于这个维度树,他们创建了一个叫FRABench的大规模数据集。这个数据集有60.4k对样本和325k个评估标签,标签来自人工标注和GPT-4o辅助标注。它就像一个“训练素材库”,能用来训练和测试那些用于评估的模型(评估器)。

最后,他们利用

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

CSPhD-winston-杨帆

给我饭钱

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值