FRABench and GenEval: Scaling Fine-Grained Aspect Evaluation across Tasks, Modalities
https://arxiv.org/pdf/2505.12795
https://www.doubao.com/chat/12326095885366530
论文速览
这篇文档主要讲了研究人员为了解决大型语言模型(LLMs)输出结果的评估难题,做了三项重要工作。
首先,他们构建了一个包含112个不同评估维度的层级分类体系(维度树)。这个体系能统一自然语言生成、图像理解、图像生成和文本与图像交错生成这四种任务的评估,就像一个通用的“评估字典”,让评估者能根据具体任务和场景从中挑选合适的评估维度。
其次,基于这个维度树,他们创建了一个叫FRABench的大规模数据集。这个数据集有60.4k对样本和325k个评估标签,标签来自人工标注和GPT-4o辅助标注。它就像一个“训练素材库”,能用来训练和测试那些用于评估的模型(评估器)。
最后,他们利用