Latex原创数学文章源代码(1)

\documentclass{article}
\usepackage[top=1cm,bottom=1cm,left=1cm,right=1cm]{geometry}
\usepackage{ctex}
\usepackage{amsmath}
\usepackage{amssymb}%排版
\usepackage{pifont}%序号
\usepackage{enumitem}%列表
\usepackage{xcolor}%color
\begin{document}
     \setlength{\baselineskip}{24pt}
\begin{flushleft}
$i)$考虑$\int_{2}^{+\infty}\frac{1}{x^{p} \ln x}\,dx (p<1)$的敛散性
有一种常见的解法:

由于$p<1$,
\begin{align}
	\exists \varepsilon \text{充分小,}\quad s.t. \quad p+\varepsilon <1 \\
	\text{且}\quad \lim_{x \to +\infty} x^ {p+\varepsilon} \cdot \frac{1}{x ^ p \ln x}=+ \infty
\end{align}
Cauchy判别法可证发散
本质上利用了,$\forall \varepsilon > 0$,\quad $\lim\limits_{x \to + \infty}\frac{x^\varepsilon}{\ln x} = +\infty$ 

这也就是说$x\to +\infty$时,$x^ \varepsilon \gg \ln x$ ( $\Leftrightarrow e^{x^{\varepsilon}} \gg x$)
这个事实是显然的,使用L'Hospiatl法则可证

那么从这个事实和柯西判别法出发,我们也可以不用这个莫名其妙的$\varepsilon$

试着思考对于$x^\alpha$:
\begin{align}
	\lim_{x \to +\infty}x^\alpha \cdot \frac{1}{x^p \ln x}
\end{align}
\begin{enumerate}[label=\ding{172}]
\item 若$\alpha \leq p <1$,则极限为0,什么结果都不能得出
\item  若$\alpha > p$,则极限为$+\infty$,再加强一下$\alpha <1$的条件,就可以证明发散,否则什么结果也不能得出
\end{enumerate}
通过以上分析,\textcolor{red}{我们只能取$\alpha \in (p,1)$才能使用柯西判别法得出结果},这条思路是很清晰且不勉强的

那么任取一个都是可以的,并不一定需要$p+ \varepsilon $

那么不妨取$\alpha=\frac{p+1}{2} <1$,原极限:
\begin{equation}
	\lim_{x \to +\infty}x^\alpha \cdot \frac{1}{x ^ p \ln x}=\lim_{x \to +\infty}\frac{x^{\frac{1-p}{2}}}{\ln x} =+\infty
\end{equation}
由柯西判别法可判断发散,你也可以用别的插值

当然这里笔者再给出一种解法,对于其它$p$范围的讨论是更有意义的:
\begin{align}
	\int_{2}^{+\infty}\frac{1}{x^{p} \ln x}\,dx &=\int_{2}^{+\infty}\frac{1}{x^{p-1} \ln x}\,d\ln x \\ 
	                                            &=\int_{2}^{+\infty}\frac{x^{1-p}}{ \ln x}\,d\ln x 
\end{align}
令$t=\ln x$,得到:
\begin{align}
	orignal\quad equation&=\int_{\ln 2}^{+\infty}\frac{e^{t\cdot (1-p)}}{t}\,dt
	            \\    &=+\infty 
\end{align}
结果是笔者观察的

或者说可以应用$\frac{1}{t}$,进行柯西判别法判断发散
\end{flushleft}
\end{document}
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值