图神经网络task2——消息传递

1、消息传递范式

消息传递是实现GNN的一种通用框架和编程范式。它从聚合与更新的角度归纳总结了多种GNN模型的实现,它的思路是:

  • 首先结合边的特征以及和边相连的两个节点的特征,得到消息函数;
  • 把和节点u相连的边上的信息函数聚合起来,并结合u的已有节点特征,来更新v的节点特征。

在这里插入图片描述
消息传递的数学公式如下:
m e i t + 1 = Φ ( x v i t , x u t , ω e i t ) x u t + 1 = Ψ ( x u t , ρ ( { m e i t + 1 , i ∈ N ( u ) } ) \begin{aligned} m_{e_i}^{t+1} &= \Phi(x_{v_i}^t, x_u^t, \omega_{e_i}^t)\\ x_u^{t+1} &= \Psi(x_u^t, \rho(\{m_{e_i}^{t+1},i \in N(u)\}) \end{aligned} meit+1xut+1=Φ(xvit,xut,ωeit)=Ψ(xut,ρ({ meit+1,iN(u)})

  • 其中 Φ \Phi Φ是定义在每条边上的消息函数,它将边上特征与其两端节点的特征相结合来生成消息,一般是可微分的函数;
  • 其中 ρ \rho ρ聚合函数,把所有的边的消息聚合起来处理,通常是可微分、具有排列不变性的函数(即和 m e i t + 1 m_{e_i}^{t+1} me
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值