MapReduce工作流程

本文详细介绍了MapReduce的工作流程,包括MapTask的Read、Map、Collect、Spill和Combine阶段,ReduceTask的copy、merge、reduce和write阶段,以及shuffle阶段的详细步骤。MapReduce通过环形缓冲区、溢写、归并排序和Combiner优化来提高效率,减少磁盘IO和网络传输。Combiner作为Reducer的本地版本,用于在Map阶段减少数据量。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

一、MapTask详细工作流程

在这里插入图片描述
1、Read阶段:客户端通过数据信息形成任务分配的规划,然后将切片信息job.split、jar包、配置文件job.xml上传到yarn,并启动MRAppMaster计算需要启动MapTask的数量。MapTask通过用户编写的RecordReader,将文件解析为一个个的key/value。
2、Map阶段:解析出的key/value会交给用户编写的map()函数处理,并产生一系列新的key/value。
3、Collect阶段:数据通过map()函数处理完成后,会调用OutputCollector.collect()输出结果,并写入一个环形缓冲区中。
4、Spill阶段:溢写阶段,当环形缓冲区满后,MapReduce会将数据写到本地磁盘上,生成一个临时文件。
5、Combine阶段(可选):如果 设置了Combiner,写入文件之前,会对每个分区的数据进行一次聚集操作。

二、ReduceTask详细工作流程

在这里插入图片描述
1、copy阶段:ReduceTask从各个MapTask上得到数据(一个ReduceTask会得到不同MapTask中同一个分区的数据)
2、merge阶段:将从MapTask上得到的数据进行归并排序,得到一个有序文件
3、reduce阶段:将合并后的有序文件读到reduce,并进行分组,通过用户编写的reduce()函数,得到新的key/value值。
4、write阶段:ReduceTask通过用户编写的RecordWriter,将key/value值输出为目标文件。

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值