一、算子类型判断方法
假定玩算子的攻城狮,都会关心算子的返回值,并且已经明白《什么叫做宽依赖和窄依赖》。
在PySpark中,转换操作(转换算子)返回的结果通常是一个RDD对象或DataFrame对象或迭代器对象,具体返回类型取决于转换操作(转换算子)的类型和参数。
如果需要确定转换操作(转换算子)的返回类型,可以使用Python内置的type()
函数来判断返回结果的类型。
1. RDD转换算子后的类型判断
例如,对于一个包含整数的RDD,可以使用以下代码来判断map()
操作的返回类型:
from pyspark import SparkContext
sc = SparkContext("local", "map example")
nums = sc.parallelize([1, 2, 3])
result = nums.map(lambda x: x * 2)
print(type(result)) # 输出<class 'pyspark.rdd.PipelinedRDD'>
在上面的代码中,我们使用map()
方法对RDD进行映射操作,并使用type()
函数来判断其返回类型,从而确定map()
操作的返回类型为PipelinedRDD
对象,即一个RDD对象。
2. DataFrame对象转换算子后的类型判断
类似地,对于一个DataFrame对象,可以使用以下代码来判断select()
操作的返回类型:
from pyspark.sql import SparkSession
spark = SparkSession.builder.appName("select example").getOrCreate()
df = spark.read.csv("example.csv", header=True, inferSchema=True)
result = df.select("Name", "Age")
print(type(result)) # 输出<class 'pyspark.sql.dataframe.DataFrame'>
在上面的代码中,我们使用select()
方法对DataFrame进行列选择操作,并使用type()
函数来判断其返回类型,从而确定select()
操作的返回类型为DataFrame对象。
3. 迭代器对象转换后类型判断
对于迭代器对象,可以使用以下代码来判断其返回类型:
from pyspark import SparkContext
sc = SparkContext("local", "iterator example")
nums = sc.parallelize([1, 2, 3])
result = nums.toLocalIterator()
print(type(result)) # 输出<class 'iterator'>
在上面的代码中,使用toLocalIterator()
方法将RDD转换为Python迭代器对象,并使用type()
函数来判断其返回类型,从而确定toLocalIterator()
操作的返回类型为Python迭代器对象。
因此,可以根据需要使用type()
函数来判断转换操作(转换算子)的返回类型,并使用相应的方法来处理返回结果。
需要注意的是,在实际应用中,转换操作(转换算子)可能会返回极大的结果,因此应该谨慎使用,并考虑使用其他方法来处理大规模数据。
二、转换算子文字说明
在PySpark中,RDD提供了多种转换操作(转换算子),用于对元素进行转换和操作
- map(func):对RDD的每个元素应用函数func,返回一个新的RDD。
- filter(func):对RDD的每个元素应用函数func,返回一个只包含满足条件元素的新的RDD。
- flatMap(func):对RDD的每个元素应用函数func,返回一个扁平化的新的RDD,即将返回的列表或元组中的元素展开成单个元素。
- mapPartitions(func):对每个分区应用函数func,返回一个新的RDD。
- mapPartitionsWithIndex(func):对每个分区应用函数func,返回一个新的RDD,其中包含分区的索引和分区中的元素。
- sample(withReplacement, fraction, seed):随机抽样RDD中的元素,withReplacement指定是否有放回抽样,fraction指定抽样的比例,seed指定随机数生成器的种子。
- union(otherRDD):返回一个包含两个RDD所有元素的新的RDD。
- distinct(numPartitions=None):返回一个去重后的新的RDD。
- groupByKey(numPartitions=None):将RDD中的元素按键分组,返回一个包含每个键对应的所有值的新的RDD。
- reduceByKey(func, numPartitions=None):将RDD中的元素按键分组,对每个键对应的值应用函数func,返回一个包含每个键的结果的新的RDD。
- aggregateByKey(zeroValue, seqFunc, combFunc, numPartitions=None):将RDD中的元素按键分组,对每个键对应的值应用seqFunc函数,然后对每个键的结果使用combFunc函数,返回一个包含每个键的最终结果的新的RDD。
- sortByKey(ascending=True, numPartitions=None, keyfunc=lambda x: x):按键对RDD中的元素进行排序,返回一个新的RDD。
- join(otherRDD, numPartitions=None):将两个RDD中具有相同键的元素进行连接操作,返回一个新的RDD。
- cogroup(otherRDD, numPartitions=None):将两个RDD中具有相同键的元素进行分组操作,返回一个包含每个键对应的两个RDD中的所有值的新的RDD。
- cartesian(otherRDD):返回两个RDD的笛卡尔积,即所有可能的组合。
- pipe(command, env=None, checkCode=False):通过管道调用外部命令,将RDD中的元素作为输入,返回一个新的RDD,其中包含外部命令的输出。
- coalesce(numPartitions):将RDD的分区数减少到numPartitions,返回一个新的RDD,可以用于减少数据的复制和移动。
- repartition(numPartitions):将RDD的分区数增加到numPartitions,返回一个新的RDD,可以用于增加并行度。
三、转换算子(python代码例子)
1. map(func)
from pyspark import SparkContext
sc = SparkContext("local", "map example")
nums = sc.parallelize([1, 2, 3, 4, 5])
squares = nums.map(lambda x: x*x)
print(squares.collect()) # 输出[1, 4, 9, 16, 25]
2. filter(func)
from pyspark import SparkContext
sc = SparkContext("local", "filter example")
nums = sc.parallelize([1, 2, 3, 4, 5])
even_nums = nums.filter(lambda x: x %! (MISSING)== 0)
print(even_nums.collect()) # 输出[2, 4]
3. flatMap(func)
from pyspark import SparkContext
sc = SparkContext("local", "flatMap example")
words = sc.parallelize(["Hello world", "Goodbye world"])
split_words = words.flatMap(lambda x: x.