MapReduce 案例实战:日志分析与词频统计

一、前言

MapReduce 是 Hadoop 的核心计算模型,它通过 Map(映射)和 Reduce(归约) 两个阶段,实现对海量数据的并行处理。
在大数据实战中,日志分析和词频统计是最经典的案例。本文将以日志分析为例,讲解 MapReduce 的原理与实战操作。


二、MapReduce 原理回顾

  1. Map 阶段
  • 对输入数据进行分片(Split),每个 Mapper 处理一部分数据。
  • 输出 键值对 (key, value),作为 Reduce 阶段的输入。
  1. Shuffle & Sort 阶段
  • 将 Map 输出根据 key 进行 分组和排序,保证同一 key 的数据进入同一个 Reducer。
  1. Reduce 阶段
  • 对每个 key 对应的 value 列表进行聚合或计算,输出最终结果。

流程示意:

输入数据 -> Mapper -> (key,value) -> Shuffle/Sort -> Reducer -> 输出结果
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

风亦辰739

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值