References:
- Y.Zhang, J.T.Li, X.Y.Song, et al. “Overview of IoT device security detection”(in Chinese), Computer Research and Development, 2023, 60 (10): 2271-2290.
- K.KELLY. “The Ring Video Doorbell and the Entry of Amazon into the Smart Home: Implications for Consumer-Initiated Surveillance”, Journal of Consumer Policy, 2023, 46(1): 95-104.
- S. M. Sajjad, M. Yousaf, H. Afzal, et al. "eMUD: Enhanced Manufacturer Usage Description for IoT Botnets Prevention on Home WiFi Routers," in IEEE Access, vol. 8, pp. 164200-164213, 2020, doi: 10.1109/ACCESS.2020.3022272.
- D.A.Tanner, A.Hinchliffe, D.Santos. Threat assessment: Blackcat ransomware [EB/OL]. (2022-01-27) [2023-08-25]. https://unit42.Paloaltonetworks.com/blackcatransomware/
- D.BONAVENTURA, S.ESPOSITO, G.BELLA. Smart bulbs can be hacked to hack into your household arXiv preprint arXiv:2308.09019 (2023).
- Jason Wei, Yi Tay, Rishi Bommasani, et al.Emergent abilities of large language models [EB/OL]. [2023-03-10]. https://arxiv. org/pdf/2206.07682.pdf.
- Vaswani A,Shazeer N,Parmar N,et al.Attention is all you need[C]//Advances in Neural Information Processing Systems 30:Annual Conf on Neural Information Processing Systems 2017 New York:Curran Associates,2017:5998 6008.
- Emily M. Bender, Timnit Gebru, Angelina McMillan-Major, et al.On the dangers of stochastic parrots:Can language models be too big?[C]//Proc of the 2021 ACM Conf on Fairness,Accountability,and Transparency.New York:ACM,2021:610 623.
- GOERTZEL B. Artificial general intelligence:concept, state of the art, and future prospects[J].Journal of Artificial General Intelligence,2014,5(1):1-46.
- Alex Tamkin, Miles Brundage, Jack Clark, et al.Understanding the capabilities,limitations,and societal impact of large language models[J]arXiv preprint,arXiv:2102.02503,2021.
- Michael Fu, Chakkrit Tantithamthavorn. Linevul: a transformer-based linelevel vulnerability prediction. In Proceedings of the 19th International Conference on Mining Software Repositories, pages 608–620, 2022.
- Van-Anh Nguyen, Dai Quoc Nguyen, Van Nguyen, et al. Regvd: Revisiting graph neural networks for vulnerability detection. In Proceedings of the ACM/IEEE 44th International Conference on Software Engineering: Companion Proceedings, pages 178–182, 2022.
- Yiran Cheng, Lwin Khin Shar, Ting Zhang, et al. LLM-Enhanced Static Analysis for Precise Identification of Vulnerable OSS Versions[J]. arXiv preprint arXiv:2408.07321, 2024.
- W. M. Khoo, A. Mycroft, R. Anderson. Rendezvous: A search engine for binary code. In Proceedings of the 10th Working Conference on Mining Software Repositories, 2013.
- H. Flake. Structural comparison of executable objects. In DIMVA, volume 46, 2004.
- J. Pewny, B. Garmany, R. Gawlik, et al. Cross-Architecture Bug Search in Binary Executables[C]. IEEE Symposium on Security and Privacy, 2015.
- Eschweiler S, Yakdan K, Gerhards-Padilla E. discovRE: Efficient Cross-Architecture Identification of Bugs in Binary Code[J]. 2016.DOI:10.14722/ndss.2016.23185.
- Feng Q, Zhou R, Xu C, et al. Scalable Graph-based Bug Search for Firmware Images[C]//Acm Sigsac Conference on Computer & Communications Security.ACM, 2016.DOI:10.1145/2976749.2978370.
- Franco Scarselli, Marco Gori, Ah Chung Tsoi, et al. 2009. The graph neural network model. IEEE Transactions on Neural Networks 20, 1 (2009), 61–80.
- Hanjun Dai, Bo Dai, Le Song. 2016. Discriminative Embeddings of Latent Variable Models for Structured Data. In International Conference on Machine Learning.
- Ding S H H, Fung B C M, Charland P. Asm2Vec: Boosting Static Representation Robustness for Binary Clone Search against Code Obfuscation and Compiler Optimization[J]. IEEE Computer Society, 2019, 10(1109): 472-489.
- X. Xu, C. Liu, Q. Feng, et al. “Neural Network-based Graph Embedding for Cross-Platform Binary Code Similarity Detection,” in Proceedings of the 2017 ACM SIGSAC Conference on Computer and Communications Security. Dallas Texas USA: ACM, Oct. 2017, pp. 363–376. [Online]. Available: https://dl.acm.org/doi/10.1145/3133956.3134018
- Yujia Li,Chenjie Gu,Thomas Dullien,et al. Graph Matching Networks for Learning the Similarity of Graph Structured Objects[J]. International Conference on Machine Learning, 2019, 10(48550): 1904-12787.
- V. Cochard, D. Pfammatter, C. T. Duong, et al. "Investigating Graph Embedding Methods for Cross-Platform Binary Code Similarity Detection," 2022 IEEE 7th European Symposium on Security and Privacy (EuroS&P), Genoa, Italy, 2022, pp. 60-73, doi: 10.1109/EuroSP53844.2022.00012.
- Benjamin Steenhoek, Md Mahbubur Rahman, Richard Jiles, et al. An empirical study of deep learning models for vulnerability detection[C]//2023 IEEE/ACM 45th International Conference on Software Engineering (ICSE). IEEE, 2023: 2237-2248.
- Wang J, Yu L, Luo X. Llmif: Augmented large language model for fuzzing iot devices[C]//2024 IEEE Symposium on Security and Privacy (SP). IEEE Computer Society, 2024: 196-196.
- Zhou X, Cao S, Sun X, et al. Large Language Model for Vulnerability Detection and Repair: Literature Review and the Road Ahead[J]. 2024.
- Weng C, Qin Y, Lin B, et al. Matsvd: Boosting statement-level vulnerability detection via dependency-based attention[C]//Proceedings of the 15th Asia-Pacific Symposium on Internetware. 2024: 115-124.
- Yang X, Wang S, Li Y, et al. Does data sampling improve deep learning-based vulnerability detection? Yeas! and Nays![C]//2023 IEEE/ACM 45th International Conference on Software Engineering (ICSE). IEEE, 2023: 2287-2298.
- Ding Y, Fu Y, Ibrahim O, et al. Vulnerability detection with code language models: How far are we?[J]. arXiv preprint arXiv:2403.18624, 2024.
- Wen X C, Wang X, Gao C, et al. When less is enough: Positive and unlabeled learning model for vulnerability detection[C]//2023 38th IEEE/ACM International Conference on Automated Software Engineering (ASE). IEEE, 2023: 345-357.
- Kuang H, Yang F, Zhang L, et al. Leveraging user-defined identifiers for counterfactual data generation in source code vulnerability detection[C]//2023 IEEE 23rd International Working Conference on Source Code Analysis and Manipulation (SCAM). IEEE, 2023: 143-150.
- Devlin J, Chang M W, Lee K, et al. Bert: Pre-training of deep bidirectional transformers for language understanding[C]//Proceedings of the 2019 conference of the North American chapter of the association for computational linguistics: human language technologies, volume 1 (long and short papers). 2019: 4171-4186.
- Radford A, Wu J, Child R, et al. Language models are unsupervised multitask learners[J]. OpenAI blog, 2019, 1(8): 9.
- Liu Z, Tang Z, Zhang J, et al. Pre-training by predicting program dependencies for vulnerability analysis tasks[C]//Proceedings of the IEEE/ACM 46th International Conference on Software Engineering. 2024: 1-13.
- Peng T, Chen S, Zhu F, et al. PTLVD: Program Slicing and Transformer-based Line-level Vulnerability Detection System[C]//2023 IEEE 23rd International Working Conference on Source Code Analysis and Manipulation (SCAM). IEEE, 2023: 162-173.
- Wang H, Tang Z, Tan S H, et al. Combining structured static code information and dynamic symbolic traces for software vulnerability prediction[C]//Proceedings of the IEEE/ACM 46th International Conference on Software Engineering. 2024: 1-13.
- Zhang J, Liu Z, Hu X, et al. Vulnerability detection by learning from syntax-based execution paths of code[J]. IEEE Transactions on Software Engineering, 2023, 49(8): 4196-4212.
- Tran H C, Tran A D, Le K H. DetectVul: A statement-level code vulnerability detection for Python[J]. Future Generation Computer Systems, 2025, 163: 107504.
- Tang W, Tang M, Ban M, et al. CSGVD: A deep learning approach combining sequence and graph embedding for source code vulnerability detection[J]. Journal of Systems and Software, 2023, 199: 111623.
- Jiang Z, Sun W, Gu X, et al. DFEPT: data flow embedding for enhancing pre-trained model based vulnerability detection[C]//Proceedings of the 15th Asia-Pacific Symposium on Internetware. 2024: 95-104.
- Yang A Z H, Tian H, Ye H, et al. Security vulnerability detection with multitask self-instructed fine-tuning of large language models[J]. arXiv preprint arXiv:2406.05892, 2024.
- Ziems N, Wu S. Security vulnerability detection using deep learning natural language processing[C]//IEEE INFOCOM 2021-IEEE Conference on Computer Communications Workshops (INFOCOM WKSHPS). IEEE, 2021: 1-6.
- Hanif H, Maffeis S. Vulberta: Simplified source code pre-training for vulnerability detection[C]//2022 International joint conference on neural networks (IJCNN). IEEE, 2022: 1-8.
- Liu Y, Ott M, Goyal N, et al. Roberta: A robustly optimized bert pretraining approach[J]. arXiv preprint arXiv:1907.11692, 2019.
- Ni C, Yin X, Yang K, et al. Distinguishing look-alike innocent and vulnerable code by subtle semantic representation learning and explanation[C]//Proceedings of the 31st ACM Joint European Software Engineering Conference and Symposium on the Foundations of Software Engineering. 2023: 1611-1622.
- Steenhoek B, Rahman M M, Sharmin S, et al. Do language models learn semantics of code? A case study in vulnerability detection[J]. arXiv preprint arXiv:2311.04109, 2023.
- Rahman M M, Ceka I, Mao C, et al. Towards causal deep learning for vulnerability detection[C]//Proceedings of the IEEE/ACM 46th international conference on software engineering. 2024: 1-11.
- Zhou X, Zhang T, Lo D. Large language model for vulnerability detection: Emerging results and future directions[C]//Proceedings of the 2024 ACM/IEEE 44th International Conference on Software Engineering: New Ideas and Emerging Results. 2024: 47-51.
- Fu M, Tantithamthavorn C K, Nguyen V, et al. Chatgpt for vulnerability detection, classification, and repair: How far are we?[C]//2023 30th Asia-Pacific Software Engineering Conference (APSEC). IEEE, 2023: 632-636.
- Zhou X, Tran D M, Le-Cong T, et al. Comparison of static application security testing tools and large language models for repo-level vulnerability detection[J]. arXiv preprint arXiv:2407.16235, 2024.
- Yin X. Pros and cons! evaluating chatgpt on software vulnerability[J]. arXiv preprint arXiv:2404.03994, 2024.
- Khare A, Dutta S, Li Z, et al. Understanding the effectiveness of large language models in detecting security vulnerabilities[J]. arXiv preprint arXiv:2311.16169, 2023.
- Zhang C, Liu H, Zeng J, et al. Prompt-enhanced software vulnerability detection using ChatGPT (2024)[J]. arXiv preprint arXiv:2308.12697.
- Kojima T, Gu S S, Reid M, et al. Large language models are zero-shot reasoners[J]. Advances in neural information processing systems, 2022, 35: 22199-22213.
- Ni C, Shen L, Xu X, et al. Learning-based models for vulnerability detection: An extensive study[J]. arXiv preprint arXiv:2408.07526, 2024.
- Liu Z, Liao Q, Gu W, et al. Software vulnerability detection with gpt and in-context learning[C]//2023 8th International Conference on Data Science in Cyberspace (DSC). IEEE, 2023: 229-236.
- Du X, Zheng G, Wang K, et al. Vul-rag: Enhancing llm-based vulnerability detection via knowledge-level rag[J]. arXiv preprint arXiv:2406.11147, 2024.
- Wen X C, Wang X, Chen Y, et al. Vuleval: Towards repository-level evaluation of software vulnerability detection[J]. arXiv preprint arXiv:2404.15596, 2024
- Wang L, Ma C, Feng X, et al. A survey on large language model based autonomous agents[J]. Frontiers of Computer Science, 2024, 18(6): 186345.
- Qin Y, Liang S, Ye Y, et al. Toolllm: Facilitating large language models to master 16000+ real-world apis[J]. arXiv preprint arXiv:2307.16789, 2023.
- Shao Z, Gong Y, Shen Y, et al. Enhancing retrieval-augmented large language models with iterative retrieval-generation synergy[J]. arXiv preprint arXiv:2305.15294, 2023.
- Trivedi H, Balasubramanian N, Khot T, et al. Interleaving retrieval with chain-of-thought reasoning for knowledge-intensive multi-step questions[J]. arXiv preprint arXiv:2212.10509, 2022.
- Asai A, Wu Z, Wang Y, et al. Self-rag: Learning to retrieve, generate, and critique through self-reflection[C]//The Twelfth International Conference on Learning Representations. 2023.
- “National Security Governance in the Digital Age” (in Chinese), Legal Times, 2025, (04): 6.
- J.Ma, H.Yuan. "Network Attack on Asian Winter Games: 3 U.S. Agents Wanted" (in Chinese), Global Times, April 16, 2025, p. 008.
- D.Y.Su. “Strengthening Cybersecurity Barriers to Safeguard National Security” (in Chinese), People's Posts and Telecommunications, April 15, 2025, p. 001.
- Y.P.Lai, Y.N.Wei. "Exploring the Ideological and Political Construction Path of Information Security Courses in Universities from the Perspective of Patriotism Education" (in Chinese), Journal of Yunnan University (Social Sciences Edition), 2025, (02): 135-144. [Online] Available: https://doi.org/10.19833/j.cnki.jyu.2025.02.003 (Accessed April 28, 2025).
- X.A.Zhong. "Elevating Vulnerability Governance to the National Security Level for Unified Deployment" (in Chinese), China Information Security, 2024, (05): 5.
- M.Cao, W.Ren. "Adhering to the Holistic National Security Concept: Accelerating Cybersecurity Vulnerability Governance to Empower New Quality Productive Forces Development" (in Chinese), China Information Security, 2024, (05): 20-22.
- Z.Xin, L.L.Hao, C.J.Hou, et al., "Cultivation Strategies for College Students' National Security Literacy in the Age of AI" (in Chinese), Journal of Electrical and Electronic Education, 2025, (01): 87-90.
- Szegedy C, Zaremba W, Sutskever I, et al. Intriguing properties of neural networks[J]. arXiv preprint arXiv:1312.6199, 2013.
- Goodfellow I J, Shlens J, Szegedy C. Explaining and harnessing adversarial examples[J]. arXiv preprint arXiv:1412.6572, 2014.
附中文参考文献:
[1] 张妍,黎家通,宋小祎,等. 物联网设备安全检测综述[J]. 计算机研究与发展,2023,60(10):2271-2290. DOI:10.7544/issn1000-1239.202330482.