1、前言
矩阵运算是指对矩阵的各种操作和运算,包括矩阵加法、矩阵减法、矩阵乘法、矩阵转置、求逆矩阵等。以下是常见的矩阵运算:
-
矩阵加法:对应位置的元素相加,要求加数和被加数的维度相同。
A + B = | a11 b11 | + | a12 b12 | | a21 b21 | | a22 b22 |
-
矩阵减法:对应位置的元素相减,要求减数和被减数的维度相同。
A - B = | a11 b11 | - | a12 b12 | | a21 b21 | | a22 b22 |
-
矩阵乘法:按照行乘列的方式计算,要求左矩阵的列数等于右矩阵的行数。
AB = A的行 * B的列
-
矩阵转置:将矩阵的行与列进行交换,即将A的第i行第j列元素变为转置矩阵A^T的第j行第i列元素。
对于矩阵A,A^T表示其转置矩阵。
-
矩阵求逆:对于方阵,如果其行列式不为0,则可以求其逆矩阵A^-1。
如果A是一个可逆矩阵,那么AA^-1 = A^-1A = I,其中I是单位矩阵。
矩阵运算在线性代数、数值分析、工程计算等领域有广泛的应用。例如,在解线性方程组、特征值问题、最小二乘拟合、图像处理等方面都需要用到矩阵运算。熟练掌握矩阵运算的规则和性质对于理解和应用数学模型非常重要。
2、transpose, .' 转置向量或矩阵
语法
B = A.' 返回 A 的非共轭转置,即每个元素的行和列索引都会互换。
B = transpo