你正在设计一个全新数据管道或启动一个分析项目,此时你或许正在思考该选择Python还是Go。五年前,这甚至不是个值得讨论的问题——你会毫不犹豫地选择Python,故事到此为止。然而,近年来Go在数据领域,尤其是在数据基础设施和实时处理方面,正逐渐被更多人采用。
实际上,这两种语言都已在现代数据技术栈中找到了各自的定位。Python依然非常适合机器学习和数据分析,而Go则逐步成为高性能数据基础设施的首选。
但什么时候该选哪种语言?这才是真正值得探讨的话题。希望这篇文章能帮你做出决定。
Python:数据领域的瑞士军刀
Python之所以成为数据工作的标准选择,归功于其成熟的生态系统和对开发者友好的特性。
几乎覆盖所有数据任务的现成库
Python拥有几乎覆盖所有数据任务的流行库——从数据清洗、处理、可视化到机器学习建模,应有尽有。
我们在《每位数据科学家都应了解的10个Python库》中列举了必备的数据科学工具库。
(插图:python-libraries
图片来源:KDnuggets关于Python数据科学库的文章,作者自制)
Python的交互式开发环境对数据工作有着显著影响。Jupyter Notebook(以及类似工具)让你能够在同一界面中结合代码、可视化和文档。
为实验而生的工作流程
你可以加载数据、执行转换、可视化结果、构建模型,且无需频繁切换环境。这种集成式流程大大降低了探索数据或原型开发解决方案时的摩擦。尤其在面对全新数据集或开发机器学习模型、需要不断尝试不同方法时,这种探索性的工作方式至关重要。
Python简洁易读的语法在数据工作中比你想象的更重要,尤其是在实现复杂业务逻辑或统计分析时。当你需要与领域专家协作,让他们理解并验证你的数据转换流程时,这种可读性尤为宝贵。