20200302-20200308 阅读论文笔记

本文介绍了一种基于Transformer的跨语言自然语言生成方法,通过预训练和微调,实现多语言输入理解和目标序列生成,有效解决了资源匮乏语言的NLG问题。实验表明,该模型在跨语言零样本生成任务中超越了基于机器翻译的流水线模型。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

Cross-Lingual Natural Language Generation via Pre-Training

问题:语言模型训练需要大规模训练数据,限制了在资源较少的语言上的应用------>跨语言预训练,通过微调将单语言NLG监督转移到其他经过预先训练的语言。

跨语言生成:(1)要求模型理解多语言输入文本,并生成多语言目标序列。(2)语言对与语言数量的平方成正比。(3)预测空间大。

模型基于Transformer,预训练方法如下:

方法:在这里插入图片描述

在跨语言零样本问题生成/文本摘要任务(用英文训练,在其它语言上测试)上进行了实验,表明XNLG 可以超越基于机器翻译的流水线模型。

在这里插入图片描述

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值