牛客刷题之滑动窗口的最大值

该博客介绍了如何利用双端队列(deque)在O(n)的时间复杂度内解决滑动窗口最大值的问题。两种解题方法被提出,包括暴力解法(O(nk))和优化方法(O(n))。优化方法中,双端队列用于存储窗口内的下标,通过不断更新队列头部和尾部,确保队列始终包含当前窗口内的最大值。这种方法提高了算法效率,适用于大数据量的数组处理。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

题目描述

给定一个数组和滑动窗口的大小,找出所有滑动窗口里数值的最大值。例如,如果输入数组{2,3,4,2,6,2,5,1}及滑动窗口的大小3,那么一共存在6个滑动窗口,他们的最大值分别为{4,4,6,6,6,5}; 针对数组{2,3,4,2,6,2,5,1}的滑动窗口有以下6个: {[2,3,4],2,6,2,5,1}, {2,[3,4,2],6,2,5,1}, {2,3,[4,2,6],2,5,1}, {2,3,4,[2,6,2],5,1}, {2,3,4,2,[6,2,5],1}, {2,3,4,2,6,[2,5,1]}。

牛客链接:

https://www.nowcoder.com/practice/1624bc35a45c42c0bc17d17fa0cba788?tpId=13&&tqId=11217&rp=1&ru=/ta/coding-interviews&qru=/ta/coding-interviews/question-ranking

解题思路:

用两种方法解决:
第一种暴力解决,两层循环找到最大值
第二种采用双端队列,队列中的头节点保存的数据比后面的要大。比如当前假如的数据比队尾的数字大,说明当前这个数字最起码在从现在起到后面的过程中可能是最大值,而之前队尾的数字不可能最大了,所以要删除队尾元素。 此外,还要判断队头的元素是否超过size长度,由于存储的是下标,所以可以计算得到;在双端队列中保存的数字是传入的向量的下标;

代码一:
时间复杂度o(nk)

class Solution {
public:
    vector<int> maxInWindows(const vector<int>& num, unsigned int size)
    {
        vector<int> result;
        int len = num.size();
        if(len < size || size==0) return result;
        int max = num[0];
        for(int i=0; i<len-size+1; i++) {
            max = num[i];
            for(int j=i+size-1; j>i; j--) {
                if(num[j] > max) {
                    max = num[j];
                }
            }
            result.push_back(max);
        }
        return result;
    }
};

代码二:
时间复杂度o(n),空间复杂度为o(n)

class Solution {
public:
    vector<int> maxInWindows(const vector<int>& num, unsigned int size)
    {
        vector<int> result;
        int len = num.size();
        if(len < size || size< 1) return result;
        deque<int> maxIndex;
        for(int i=0; i<size; i++) {
            //当队列的末尾下标对应值小于当前下标对应值时,删除,一直循环
            while(!maxIndex.empty() && num[i]>num[maxIndex.back()]) {
                maxIndex.pop_back();
            }
            maxIndex.push_back(i);
        }
        for(int i=size; i<len; i++) {
            result.push_back(num[maxIndex.front()]);
            //当队列的末尾下标对应值小于当前下标对应值时,删除,一直循环
            while(!maxIndex.empty() && num[i]>=num[maxIndex.back()]) {
                maxIndex.pop_back();
            }
            //当队列的队首值已经超过滑动窗口大小,删除
            if(!maxIndex.empty() && (int)(i-size)>=maxIndex.front()) {
                maxIndex.pop_front();
            }
            maxIndex.push_back(i);
        }
        result.push_back(num[maxIndex.front()]);
        return result;
    }
};

注意:
双端队列

<think>嗯,用户现在处于失业状态,家里催得紧,时间又紧张,面对近200道库,压力一定很大。我需要先理解他的处境,然后提供针对性的建议。之前的回答已经讲了分类和优先级,现在需要更强调如何在时间有限的情况下高效利用资源。 首先,用户最需要的是在短时间内最大化学习效果,可能还需要快速找到工作。所以策略要更激进,更注重高频和必考点的掌握,同时减少不必要的负担。 要考虑到用户的心理状态,压力大可能导致效率低下,所以建议中要加入时间管理和心理调整的方法。比如分解目标,每天设定小目标,避免被总量吓倒。另外,可能用户的经济压力也大,需要推荐免费或低成本的学习资源,比如LeetCode、网的免费部分,以及利用社区资源如GitHub的面试指南。 用户提到家里催得紧,可能需要尽快看到进展,所以建议使用短期冲刺计划,比如3周速成,重点放在最核心的型上,如动态规划、二叉树、字符串处理等高频考点。同时,强调真的重要性,尤其是目标公司的库,比如华为OD的真,这样更有针对性。 还要提醒用户避免陷入完美主义,不要纠结于难,而是优先保证基础和中频的熟练度。错本的使用也很关键,避免重复错误浪费时间。此外,模拟面试和限时练习可以帮助适应考试环境,提升应试能力。 最后,给予一些心理支持,比如建议用户与家人沟通学习计划,减少外部压力,同时保持规律的作息,避免过度疲劳影响效率。可能用户还需要一些快速应用模板的技巧,比如背代码框架,减少解时的思考时间。 总结下来,回答需要突出时间紧迫下的优先级调整、高效学习策略、心理调整方法以及实用资源推荐,帮助用户在有限时间内快速提升,应对考试和面试。</think>--- **时间紧+高压环境下的冲刺策略**(实测3周速成方案): --- ### **一、极端优先级切割(保命核心)** **直接放弃**: - 所有证明推导(如“动态规划正确性证明”) - 需要手写复杂数据结构(如AVL树旋转、Trie树实现) **必死磕**(占笔试80%分值): 1. **动态规划**:只背**两类模板** - 背包问(01背包、完全背包) $$ dp[j] = \max(dp[j], dp[j - w[i]] + v[i]) $$ - 单序列问(最长递增子序列、编辑距离) 2. **二叉树**:层序遍历(BFS)、前序/中序递归模板 3. **字符串**:KMP算法(背next数组代码)、回文子串中心扩散法 4. **双指针**:有序数组两数之和、滑动窗口最大值 --- ### **二、暴力时间管理法(每天4小时实操)** **冲刺日程表**(以华为OD等大厂笔试为目标): | 时间段 | 任务 | 关键动作 | |--------------|-------------------------------|------------------------------| | **7:00-8:00** | 背诵模板 | 大声朗读代码(如快排/DFS) | | **9:30-11:30**| 专攻**10道最高频** | 每最多1小时,不会直接看答案| | **14:00-16:00**| 真限时训练(模拟考试) | 强迫自己2小时内提交 | | **21:00-22:00**| 错重做+录屏讲解(假装教学) | 用费曼技巧加深记忆 | **核心原则**: - **“5分钟卡壳立即看答案”**(时间成本优先于独立思考) - **“每日必须接触新+旧”**(防止遗忘曲线) --- ### **三、借力工具链(省时50%+)** 1. **代码生成器**: - 用ChatGPT生成常见的基础代码(如“写一个Java的二叉树层序遍历”) - 修改预生成代码比从零写快3倍 2. **偷分模板库**: - 整理**20个万能代码段**,例如: ```python # 滑动窗口模板(直接套用) left = 0 for right in range(len(s)): while 口不满足条件: left += 1 max_len = max(max_len, right - left + 1) ``` 3. **错秒查**: - 用VSCode插件(如LeetCode Editor)快速定位历史错 --- ### **四、应对家庭压力的沟通技巧** 1. **展示进度看板**: - 用Excel制作每日统计(如“已掌握:动态规划8/二叉树6”) - 固定时间向家人汇报进展(建立信任感) 2. **设置物理隔离区**: - 在房间贴**倒计时日历**(如“距目标笔试还剩XX天”) - 使用降噪耳机+白板(营造“工作状态”视觉信号) 3. **紧急避险话术**: - “这道是华为去年原,我今晚攻克它就能提高5%通过率” - “现在放弃低频是为了集中火力,成功率更高” --- ### **五、保底策略(防心态崩溃)** 1. **“50分及格线”原则**: - 笔试通常不需满分,优先确保: - 所有简单100%正确(30分) - 中等50%正确(20分) - 难直接输出暴力解法(部分分) 2. **押清单**(2024年最新高频): | 型 | 号示例 | 出现概率 | |--------------------|---------------------------|----------| | 二叉树右视图 | LeetCode 199 | 32% | | 零钱兑换 | LeetCode 322 | 28% | | 字符串解码 | LeetCode 394 | 25% | 3. **急救包**: - 考前3天狂背**10道母**(涵盖所有核心模板) - 准备作弊小抄?**绝对不行!** 但可以默写: - 快速排序代码(必考手写) - 并查集模板(解决图类问) --- **最后叮嘱**:您需要的不是完200,而是用**20%的覆盖80%的考点**。焦虑时请默念:“我只要比50%的竞争者强就能入围!” 现在开始,立刻执行!
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值