从0到1搭建属于自己的智能体(扣子空间)

1.搜索扣子官网

1.1登录进入扣子开发平台

1.2进入工作空间

1.3在资源库地方右上角选择创建知识库和工作流

2.创建知识库

2.1根据1.3进入创建知识库页面

注:该页面可以下拉选择上传文件类型

2.2上传知识库文档

下一步

一直下一步,指导完成显示处理中,知识库搭建完成。

3.创建工作流

3.1创建工作流,输入基本信息

3.2创建工作流内容

创建需要的工作流

完整的工作流

创建好了,以后试运行发布。

这里的创建参考了:

从0到1搭建自己的知识库(AI智能体)看这篇就够了!赶紧收藏!_知识库搭建实施步骤-CSDN博客

4.创建ai-agent(AI智能体)

4.1点击右上角创建智能体

4.2使用ai帮助创建智能体

点击生成,等待一会,点击确定,生成完成,如图

4.3智能体页面的简单介绍

更改工作流和大模型等内容,调试发布我们的智能体。

### 使用扣子框架搭建看图识字的AI模型 搭建一个用于看图识字的智能体需要结合图像处理技术和自然语言处理技术。以下是具体的实现方法和步骤说明。 #### 1. 数据准备与预处理 在构建看图识字模型之前,需要准备高质量的训练数据集。这些数据集应包含图像及其对应的文本标签。例如,可以使用开源的数据集如 MNIST、COCO-Text 或者 SynthText[^2]。对于图像预处理,通常包括以下操作: - 调整图像大小以适应模型输入。 - 对图像进行归一化处理。 - 如果需要增强数据集,可以通过旋转、缩放或添加噪声等方式生成更多样本。 ```python from PIL import Image import numpy as np def preprocess_image(image_path, target_size=(64, 64)): image = Image.open(image_path).convert("L") # 灰度化 image = image.resize(target_size) image_array = np.array(image) / 255.0 # 归一化 return image_array ``` #### 2. 模型架构设计 扣子框架(假设为 PyTorch 或 TensorFlow 的别称)提供了丰富的工具来构建深度学习模型。对于看图识字任务,可以选择以下两种主流架构之一: - **卷积神经网络(CNN)+ 循环神经网络(RNN)**:CNN 提取图像特征,RNN 解码文本序列。 - **Transformer 模型**:直接将图像像素作为输入,通过注意力机制生成文本。 以下是基于 CNN 和 RNN 的简单模型示例: ```python import torch import torch.nn as nn class OCRModel(nn.Module): def __init__(self, num_classes=37): # 假设字符集大小为37 super(OCRModel, self).__init__() self.cnn = nn.Sequential( nn.Conv2d(1, 32, kernel_size=3, stride=1, padding=1), nn.ReLU(), nn.MaxPool2d(kernel_size=2, stride=2), nn.Conv2d(32, 64, kernel_size=3, stride=1, padding=1), nn.ReLU(), nn.MaxPool2d(kernel_size=2, stride=2) ) self.rnn = nn.LSTM(input_size=256, hidden_size=128, num_layers=2, batch_first=True) self.fc = nn.Linear(128, num_classes) def forward(self, x): x = self.cnn(x) # (batch_size, channels, height, width) x = x.permute(0, 3, 1, 2) # 调整维度顺序 batch_size, width, channels, height = x.size() x = x.view(batch_size, width, -1) # (batch_size, width, features) x, _ = self.rnn(x) x = self.fc(x) return x ``` #### 3. 训练过程 训练过程中需要定义损失函数和优化器。常用的损失函数是交叉熵损失,适用于分类问题。此外,为了提高模型的泛化能力,可以引入正则化技术如 Dropout 或 L2 正则化。 ```python model = OCRModel(num_classes=37) criterion = nn.CrossEntropyLoss() optimizer = torch.optim.Adam(model.parameters(), lr=0.001) # 训练循环 for epoch in range(num_epochs): for images, labels in dataloader: optimizer.zero_grad() outputs = model(images) loss = criterion(outputs, labels) loss.backward() optimizer.step() ``` #### 4. 部署与推理 完成训练后,可以将模型保存并部署到生产环境中。在推理阶段,输入一张图片即可得到其对应的文本内容。 ```python def predict(image_path, model): image = preprocess_image(image_path) image_tensor = torch.tensor(image).unsqueeze(0).unsqueeze(0) # 添加批次和通道维度 with torch.no_grad(): output = model(image_tensor) _, predicted = torch.max(output, 2) return predicted.squeeze().numpy() ``` #### 5. 提示工程的意义和核心思想 提示工程的核心在于设计有效的 Prompt 来引导大模型生成期望的结果。在看图识字任务中,可以结合提示工程的思想,将图像特征与文本信息对齐,从而提升模型性能[^1]。 ---
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值