2.transformer笔记

transformer发展

注意力机制的关键组成部分

外链图片转存失败,源站可能有防盗链机制,建议将图片保存下来直接上传
在这里插入图片描述

transformer由序列对齐变成self attention

在这里插入图片描述

self attention

Self-attention,也称为自注意力机制,是一种用于处理序列数据的注意力机制。它最初是在自然语言处理领域中引入的,特别是在机器翻译任务中,被提出作为Transformer模型的核心组件。

自注意力机制的基本思想:

在传统的注意力机制中,注意力权重是通过计算查询(query)和键(key)之间的关联来获得的。而自注意力机制引入了一种机制,允许每个位置(或词)都能够关注到序列中的其他位置,而不仅仅是与它相邻的位置。

在自注意力机制中,有三个关键的元素:查询(Q)、键(K)、值(V)。

  1. 查询(Q): 用于计算与序列中其他位置的关联程度。
  2. 键(K): 用于表示序列中的位置,它与查询一起被用来计算关联程度。
  3. 值(V): 序列中的位置的表示,用于计算加权和。

在自注意力机制中,每个位置的查询、键、值都是通过线性变换(通常是独立的全连接层)得到的。关联程度通过查询与键的点积得到,然后经过一些归一化处理,最终用于加权求和,得到最终的表示。

自注意力机制的计算过程:

给定一组输入序列 ({x_1, x_2, …, x_n}),对于每个位置 (i),计算自注意力表示 (y_i) 的过程如下:

  1. 计算查询
    qi=Wq⋅xi q_i = W_q \cdot x_i qi=Wqxi

    ki=Wk⋅xi k_i = W_k \cdot x_i ki=Wkxi

    vi=Wv⋅xi v_i = W_v \cdot x_i vi=Wvxi

  2. 计算注意力分数(unnormalized):
    scoreij=qi⋅kj \text{score}_{ij} = q_i \cdot k_j scoreij=

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

(initial)

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值