1.AI大模型四阶技术总览

本文深度解读AI发展的四轮浪潮,包括弱人工智能、机器学习、深度学习和大语言模型。重点介绍了AI大模型的四阶技术——提示工程、智能体、微调和预训练。提到了Prompt Engineering的最佳实践,如角色设定和问题拆解。此外,讨论了AI Agents的基础——ReAct范式,以及基于LangChain的智能体生态系统。同时,阐述了大模型微调的必要性和技术路线,如全量微调、参数高效微调等。最后,探讨了预训练技术的成本和挑战,以及未来的发展趋势。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

AI大模型四阶技术总览

深度解读 AI 发展四轮浪潮

• 技术浪潮:弱人工智能、机器学习、深度学习、大语言模型
• 应用浪潮:高校共识、硅谷创新、中美博弈
• 把握浪潮:AI 大模型助力超级个体和小团队

AI 大模型四阶技术总览

• 提示工程(Prompt Engineering)
• AI智能体(Agents)
• 大模型微调(Fine-tuning)
• 预训练技术(Pre-training)

技术对比

请添加图片描述

请添加图片描述

提示工程(Prompt Engineering)

Prompt : 大模型时代的沟通话术

请添加图片描述

基于GPT 的Prompt 技巧最佳实践

• 角色设定:擅于使用 System 给GPT设定角色和任务,如“哲学大师”;
• 指令注入:在 System 中注入常驻任务指令,如“主题创作”;
• 问题拆解:将复杂问题拆解成的子问题,分步骤执行,如:Debug 和多任务;
• 分层设计:创作长篇内容,分层提问,先概览再章节,最后补充细节,如:小说生成;
• 编程思维:将prompt当做编程语言,主动设计变量、模板和正文,如:评估模型输出质量;
• Few-Shot:基于样例的prompt设计,规范推理路径和输出样式,如:构造训练数据;

使用 LangChain 和 OpenAI API 自动化构造 Prompt
请添加图片描述

AI Agents(智能体)

AI Agents 基础:ReAct 范式

请添加图片描述

LangChain Agent: 构建复杂应用的代理系统

请添加图片描述

LangChain Agents 设计原理

Agents 的核心思想是使用LLM来决策一系列要执行的动作,以完成目标。

  • 在链式结构(Chains)中,一系列动作执行是硬编码的( SequentialChain 和 RouterChain 也仅实现了面向过程)。
  • 在代理(Agents)中,语言模型被用作推理引擎,以确定应该采取哪些动作以及执行顺序。

请添加图片描述
请添加图片描述

LangChain Agents Ecosystem

规划(Planning)
• 提示(Prompt):

  • LLM 多角色赋能
  • 给予充分的上下文(例:从 Memory 获取)
  • 学习策略(例:思维链 CoT)
    • 代理(Agent):决策下一步做什么
    记忆(Memory)
    • 短期(Short-term):内存
    • 长期(Long-term):向量数据库
    工具(Tools)
    • 百花齐放的外部可调用服务

请添加图片描述

智能代理分类:
• 行动代理(Action agents):旨在决定行动序列(工具使用)(例如OpenAI Funciton Call,ReAct)。
• 模拟代理(Simulation agents):通常设计用于角色扮演,在模拟环境中进行(例如生成式智能体,CAMEL)
• 自主智能体(Autonomous agent):旨在独立执行以实现长期目标(例如Auto-GPT, BabyAGI)。

基于 LangChain 的 RAG 应用设计

请添加图片描述

大模型微调(Fine-tuning)

请添加图片描述

为什么需要微调大模型

  • 预训练成本高(LLaMA-65B 需要780GB 显存)
  • 提示工程有天花板(token 上限与推理成本)
  • 基础模型缺少特定领域数据
  • 数据安全和隐私
  • 个性化服务需要私有化的微调大模型

GPT 系列模型迭代:预训练+微调

请添加图片描述

大模型微调技术路线

  • 全量微调(Full Fine-Tune, FFT)
  • 高效微调(Parameter-Efficient Fine-Tune, PEFT)
    • 有监督微调(Supervised Fine-tune, SFT)
    • 基于人类反馈的强化学习(RLHF)
    • 基于AI反馈的强化学习(RLAIF)

全量微调问题
训练成本高灾难性遗忘

请添加图片描述
请添加图片描述

PEFT 主流技术方案

  • 围绕 Token 做文章:语言模型(PLM)不变
    • Prompt Tuning
    • Prefix Tuning
    • P-Tuning
  • 特定场景任务:训练“本质”的低维模型
    • LoRA
    • QLoRA
    • AdaLoRA
  • 新思路:少量数据、统一框架
    • IA3
    • UniPELT

预训练技术(Pre-training)

预训练语言模型 (Pre-trained language models)

请添加图片描述

预训练语言模型的三种网络架构(2018-2020)

请添加图片描述

请添加图片描述

基于 Transformer 的语言模型总成本依然很高(2020)

主要体现在以下参数:

  • 数据集大小
  • 模型大小(以参数量表示)
  • 训练量(以预训练过程中处理的token 总数量表示)

根据谷歌发布的信息,研究者估计在训练110 亿参数的T5 变体时,单次运行成本就远远超出了130 万美元。假设T5 大模型和数百个小模型运行2-3次,则整个项目的成本可能就达到了1000 万美元。

过程中处理的token 总数量表示)

根据谷歌发布的信息,研究者估计在训练110 亿参数的T5 变体时,单次运行成本就远远超出了130 万美元。假设T5 大模型和数百个小模型运行2-3次,则整个项目的成本可能就达到了1000 万美元。

请添加图片描述

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

(initial)

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值