Codeforces Round #674 B. Symmetric Matrix(水题)

该篇博客探讨了一道编程题目,涉及将不同2x2矩阵组合成更大规模的对称矩阵的可能性。当m为奇数时,由于对称性的限制,无法构建;对于偶数m,关键在于是否存在对称的2x2矩阵。代码中通过判断输入的矩阵是否有对称性质来确定是否能构建目标矩阵。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

题目地址:传送门
题目贴上:
在这里插入图片描述

题意,给你n种 2x2的矩阵,并且每种矩阵可以无限次使用,问你是否能组成mxm的矩阵(新矩阵必须是严格按照主对角线对称矩阵)
思路:首先给你的2x2矩阵,很明显我们不能拼成奇数长宽的矩阵,所以如果m为奇数,直接输出no,最后考虑m为偶数的情况,很明显,如果给你n个2x2矩阵当中没有一个矩阵是主对角线对称矩阵,那肯定无法组成更大的mxm型的对称矩阵
代码:

#include<bits/stdc++.h>
using namespace std;
struct Point
{
    int x1,y1,x2,y2;
    bool isOk = false;
};

int main(void)
{
    int t,n,m;
    cin>>t;
    while(t--)
    {
        cin>>n>>m;
        Point p[102];
        bool isCan = false;
        for(int i=1;i<=n;++i)
        {
            cin>>p[i].x1>>p[i].y1>>p[i].y2>>p[i].x2;
            p[i].isOk=(p[i].y1==p[i].y2);
            if(p[i].isOk) isCan = true;
        }
        if( m&1 || !isCan)cout<<"NO"<<endl;
        else cout<<"YES"<<endl;
    }
}

评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

凌晨小街

你的鼓励是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值