【趣题】【"竖着的"线段树】NKOJ 3726 史上最大值

本文详细解析了NKOJ3726题目的算法实现过程,利用线段树来处理一系列加法和置零操作,最终求得每个位置的历史最大值。通过构建线段树并维护节点状态,有效地解决了问题。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

NKOJ 3726 史上最大值
时间限制 : - MS 空间限制 : 165536 KB

问题描述
给出一个长度为n的序列,一开始序列中每个数字都为0。现在有两种操作:
1.将区间[x,y]的数字都加上一个整数d(0< d<=10000);
2.将区间[x,y]的数字都置为0
操作共进行了m次,问操作结束后,数列中每个数字在这m次操作过程中,出现过的最大值是多少?即历史上出现过的最大值。

输入格式
第一行,一个两个整数n和m,(1<=n,m<=100000)
接下来m行,每行第一个整数为z,表示操作类型,
z=1表示1号操作,后面三个整数x,y和d
z=2表示2号操作,后面两个整数x,y

输出格式
一行,n个整数,表示数列中,每个数字历史上出现过的最大值。

样例输入 1
5 4
1 2 4 3
1 3 5 1
2 1 5
1 1 4 2

**样例输出 1**2 3 4 4 1

样例输入 2
10 10
1 7 9 8
1 6 10 1
2 6 9
1 5 8 3
1 2 3 5
2 1 5
1 2 10 5
2 5 9
1 6 9 7
1 1 9 3

样例输出 2
3 8 8 8 5 10 10 10 10 6

思路:
建立按操作为节点的线段树
将所有操作按其实位置和结束位置排序,每次求一个位置的ans时,先将起始位置为该位置的操作添加,再求ans,再将结束位置对应该位置的操作去除。
每次求ans相当于求整个线段树当前的最大连续和
每次进行操作时,清零表示断开,而不将权值真的改为1

#include<cstdio>
#include<iostream>
using namespace std;
const int need=100003;

struct fy{int a,b,val,fl,fr,fmax,fl1,fr1;}t[need<<1];
//fl1、fr1统计该段从左、右连续的、未被清零的位置数,val保存无论清零与否的值。  
int lax[need],fix[need],lay[need],fiy[need],kk[need],a[need];
int le[need<<1],ri[need<<1],tot=0,n,x,y,k,d;

int max3(int a,int b,int c){return max(a,max(b,c));}
void NBHB(int s)
{
    if(t[s].a==t[s].b) return ;
    int lenl=t[le[s]].b-t[le[s]].a+1,lenr=t[ri[s]].b-t[ri[s]].a+1;
    if(t[le[s]].fl1==lenl)
    {
        t[s].fl1=lenl+t[ri[s]].fl1;
        t[s].fl=t[le[s]].fmax+t[ri[s]].fl;
    }
    else
    {
        t[s].fl1=t[le[s]].fl1;
        t[s].fl=t[le[s]].fl;
    }
    if(t[ri[s]].fr1==lenr)
    {
        t[s].fr1=lenr+t[le[s]].fr1;
        t[s].fr=t[ri[s]].fmax+t[le[s]].fr;
    }
    else
    {
        t[s].fr1=t[ri[s]].fr1;
        t[s].fr=t[ri[s]].fr;
    }
    t[s].fmax=max3(t[le[s]].fmax,t[ri[s]].fmax,t[le[s]].fr+t[ri[s]].fl);
}
void build(int x,int y)
{
    int s=++tot;
    t[s].a=x,t[s].b=y;
    if(x==y) 
    {
        t[s].fl1=t[s].fr1=1;
        return ;
    }
    le[s]=tot+1;build(x,(x+y)>>1);
    ri[s]=tot+1;build((x+y)/2+1,y);
    NBHB(s);
} 
void add(int s)
{
    if(t[s].a==t[s].b&&t[s].a==d) 
    {
        t[s].val+=k;
        t[s].fl1=t[s].fr1=1;
        t[s].fl=t[s].fr=t[s].fmax=t[s].val;
        return ;
    }
    else if(t[le[s]].a<=d&&d<=t[le[s]].b) add(le[s]);
    else if(t[ri[s]].a<=d&&d<=t[ri[s]].b) add(ri[s]);
    NBHB(s);
}
void clean(int s)
{
    if(t[s].a==t[s].b&&t[s].a==d) 
    {
        t[s].fl1=t[s].fr1=0;
        t[s].fl=t[s].fr=t[s].fmax=0;
        return ;
    }
    else if(t[le[s]].a<=d&&d<=t[le[s]].b) clean(le[s]);
    else if(t[ri[s]].a<=d&&d<=t[ri[s]].b) clean(ri[s]);
    NBHB(s);
} 
void re(int s)
{
    if(t[s].a==t[s].b&&t[s].a==d) 
    {
        t[s].fl1=t[s].fr1=1;
        t[s].fl=t[s].fr=t[s].fmax=t[s].val;
        return ;
    }
    else if(t[le[s]].a<=d&&d<=t[le[s]].b) re(le[s]);
    else if(t[ri[s]].a<=d&&d<=t[ri[s]].b) re(ri[s]);
    NBHB(s);
} 

int main()
{
    int m;scanf("%d%d",&n,&m);
    build(1,m);
    for(int i=1;i<=m;i++)
    {
        scanf("%d",&a[i]);
        if(a[i]==1) scanf("%d%d%d",&x,&y,&kk[i]);
        else scanf("%d%d",&x,&y);
        lax[i]=fix[x],lay[i]=fiy[y];
        fiy[y]=fix[x]=i;
    } 
    int ans=0,tt;
    for(int i=1;i<=n;i++)
    {
        tt=fix[i];
        while(tt)
        {
            if(a[tt]==1)
            {
                k=kk[tt],d=tt;
                add(1);
            }
            else
            {
                d=tt;
                clean(1);
            }
            tt=lax[tt];
        }
        printf("%d ",t[1].fmax);
        tt=fiy[i];
        while(tt)
        {
            if(a[tt]==1)
            {
                k=-1*kk[tt],d=tt;
                add(1);
            }
            else 
            {
                d=tt;
                re(1); 
            }
            tt=lay[tt];
        }
    }
} 
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值