现有图片文件转url请求路径

创建stc同级目录pic (如果有需要,可以+二级目录)把需要转的图片文件复制进去

使用utils:PhotoUtils



import org.springframework.stereotype.Component;
import org.springframework.web.servlet.config.annotation.ResourceHandlerRegistry;
import org.springframework.web.servlet.config.annotation.WebMvcConfigurerAdapter;

@Component
public class PhotoUtils extends WebMvcConfigurerAdapter {

    @Override
    public void addResourceHandlers(ResourceHandlerRegistry registry) {
        registry.addResourceHandler("/images/**")
                .addResourceLocations("file:"+System.getProperty("user.dir")+"/pic/");
    }
}

运行项目,发送http://localhost:8801/images/(可能存在的二级目录/)图片名称

<think>嗯,用户现在问的是如何通过HTTP API将录音文件URL路径换为文字并返回文本。我需要先理解他们的需求。之前的对话里,他们问的是音频格式换的API,现在向语音文字,也就是STT(Speech-to-Text)服务。用户可能想要一个类似之前的结构,使用Flask框架,提供接口,接收URL参数,然后处理返回文本。 首先,我需要确定用户的具体需求。他们提到录音文件URL路径,而不是本地文件路径,所以需要从URL下载音频文件。然后进行语音识别,返回文本。可能需要用到现有的语音识别库,比如Google的SpeechRecognition,或者调用第三方API如Google Cloud Speech-to-Text、Azure Cognitive Services等。用户可能希望有一个自托管的解决方案,所以可能需要考虑离线库,比如Vosk或者Whisper。 接下来,我需要考虑用户的技术栈。之前他们使用了Flask,所以继续用Flask来构建API是合理的。同时,要确保代码结构清晰,有错误处理,参数验证,可能还需要处理不同的音频格式,可能需要换音频格式以适应语音识别库的要求,比如换为WAV格式,16kHz采样率等。 用户可能没有提到认证,但在生产环境中,可能需要API密钥认证,或者限流措施。不过当前问题可能只需要基础实现。另外,需要注意处理大文件的情况,比如设置下载超时,或者异步处理,但用户可能暂时只需要同步处理。 然后,我需要回顾之前的回答结构,确保一致性。之前的回答包括安装依赖、Flask路由、参数说明、示例调用、扩展建议等。这次也应该类似,但针对语音文字的功能。 可能会用到的库有SpeechRecognition(需要PyAudio,但安装可能麻烦),或者Vosk,或者Whisper。考虑到安装的简便性,可能用Whisper,但需要处理模型下载。或者使用离线库Vosk,但需要下载模型文件。或者使用在线服务,但需要API密钥。 用户可能需要一个完整的示例,所以需要选择一个合适的库。比如,使用SpeechRecognition和Whisper的组合,或者单独使用Whisper,因为Whisper支持多种格式,并且准确率较高。但Whisper的模型比较大,可能影响部署。或者使用Vosk,离线但需要特定模型。 另外,音频文件URL下载,需要使用requests库获取文件内容,保存到临时文件,或者直接读取到内存。然后传递给语音识别库。 可能的步骤:接收JSON参数,包含audio_url,然后下载音频文件,检查是否有效,换格式(如果需要),调用语音识别库,返回文本。 错误处理方面,需要捕获下载失败、文件损坏、识别错误等情况,返回相应的HTTP状态码和错误信息。 参数验证方面,确保audio_url存在且是合法的URL,可能检查文件大小,支持的格式等。 示例调用部分,展示如何使用curl或Python的requests库调用接口。 扩展建议可能包括支持更多音频格式,异步处理,认证,限流,日志,存储结果到数据库等。 最后,需要测试代码,确保没有语法错误,并且能够正确运行。可能需要安装额外的依赖,比如ffmpeg,用于音频处理。 总结,需要提供一个基于Flask的API,接收包含audio_url的JSON,下载音频,换为文本,返回结果。使用合适的语音识别库,处理错误,给出示例和扩展建议。</think>以下是基于HTTP API实现录音文件URL文字服务的完整方案,使用Python Flask框架: ```python # 安装依赖(终端执行) # pip install flask SpeechRecognition pydub requests from flask import Flask, request, jsonify from pydub import AudioSegment import speech_recognition as sr import requests import tempfile import os app = Flask(__name__) @app.route('/transcribe', methods=['POST']) def speech_to_text(): """ 语音文字API接口 接收JSON参数: { "audio_url": "http://example.com/audio.mp3", "language": "zh-CN" # 默认中文 } """ try: # 获取请求参数 data = request.get_json() audio_url = data['audio_url'] language = data.get('language', 'zh-CN') # 下载音频文件 with tempfile.NamedTemporaryFile(delete=False) as tmp_file: response = requests.get(audio_url, timeout=30) tmp_file.write(response.content) temp_path = tmp_file.name # 格式换(统一为WAV) audio = AudioSegment.from_file(temp_path) wav_path = temp_path + ".wav" audio.export(wav_path, format="wav", parameters=["-ac", "1", "-ar", "16000"]) # 单声道16kHz # 语音识别 r = sr.Recognizer() with sr.AudioFile(wav_path) as source: audio_data = r.record(source) text = r.recognize_google(audio_data, language=language) # 清理临时文件 os.unlink(temp_path) os.unlink(wav_path) return jsonify({ "status": "success", "text": text, "language": language }) except Exception as e: return jsonify({"status": "error", "message": str(e)}), 500 if __name__ == '__main__': app.run(host='0.0.0.0', port=5000, debug=True) ``` **接口调用示例**: ```bash curl -X POST http://localhost:5000/transcribe \ -H "Content-Type: application/json" \ -d '{ "audio_url": "https://example.com/record.mp3", "language": "zh-CN" }' ``` ### 核心功能说明 1. **音频处理流程**: ```mermaid graph TD A[接收URL请求] --> B[下载音频文件] B --> C{格式检测} C -->|MP3/WAV| D[统一16kHz WAV] C -->|其他格式| D D --> E[语音识别] E --> F[返回识别结果] ``` 2. **关键技术点**: - **格式换**:使用`pydub`统一为标准WAV格式(单声道/16kHz) - **语音识别**:调用Google Speech Recognition API(需联网) - **临时文件管理**:自动清理换过程中产生的临时文件 3. **参数规范**: ```json { "audio_url": "必须,音频文件可访问URL", "language": "可选,识别语言代码(默认zh-CN)", "timeout": "可选,下载超时时间(默认30秒)" } ``` ### 增强版建议方案 **方案一:使用离线引擎(推荐生产环境)** ```python # 使用Vosk本地识别引擎(需先下载中文模型) # pip install vosk from vosk import Model, KaldiRecognizer model = Model("model/zh") # 需提前下载中文模型 def vosk_transcribe(wav_path): recognizer = KaldiRecognizer(model, 16000) with open(wav_path, "rb") as f: data = f.read(4096) while data: recognizer.AcceptWaveform(data) data = f.read(4096) return json.loads(recognizer.FinalResult())["text"] ``` **方案二:使用Whisper(高精度)** ```python # pip install openai-whisper import whisper model = whisper.load_model("base") # 选择模型大小 def whisper_transcribe(audio_path): result = model.transcribe(audio_path) return result["text"] ``` ### 生产环境优化建议 1. **性能优化**: ```python # 添加异步处理(使用Celery) @app.route('/async-transcribe', methods=['POST']) def async_transcribe(): task = transcribe_task.delay(request.json) return jsonify({"task_id": task.id}), 202 ``` 2. **安全增强**: ```python # 添加请求验证 def check_auth(): api_key = request.headers.get('X-API-Key') if api_key != os.getenv("API_SECRET"): abort(401) # 添加限流(使用Flask-Limiter) from flask_limiter import Limiter limiter = Limiter(app=app, key_func=get_remote_address) ``` 3. **部署方案**: ```bash # 使用Docker部署 FROM python:3.9 RUN pip install flask vosk python-Levenshtein COPY vosk-model-zh /app/model/zh EXPOSE 5000 CMD ["gunicorn", "-w", "4", "-b", "0.0.0.0:5000", "app:app"] ``` **完整技术栈组合建议**: - 前端:Web录音组件`Recorder.js` - 存储:对接云存储OSS/S3 - 队列:RabbitMQ + Celery实现任务队列 - 监控:Prometheus + Grafana监控接口性能 需要进一步了解具体实现细节或扩展功能,可以告知具体需求方向。
评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值