文章目录
深度学习Week17——优化器对比实验
一、前言
二、我的环境
三、前期工作
1、配置环境
2、导入数据
2.1 加载数据
2.2 检查数据
2.3 配置数据集
2.4 数据可视化
四、构建模型
五、训练模型
1、将其嵌入model中
2、在Dataset数据集中进行数据增强
六、模型评估
1、Accuracy与Loss图
2、模型评估
一、前言
- 🍨 本文为🔗365天深度学习训练营 中的学习记录博客
- 🍖 原作者:K同学啊 | 接辅导、项目定制
终于,基础篇打卡已经基本结束,深度学习的基础学习到了很多,相关函数已经可以比较熟练的使用,最后一篇主要是探究不同优化器、以及不同参数配置对模型的影响,在论文当中我们也可以进行优化器的比对,以增加论文工作量。
我记得在今年4月份,我和学长一同发表了一篇EI会议论文,里面关于优化器的对比就占了一定的篇幅,那么今天,通过学习,我一定也会自己清楚如何弄清楚优化器对比,本次学习由于临近期末周,仅做了基础学习,没有过多扩展,未来会抽一周补全。
二、我的环境
- 电脑系统:Windows 10
- 语言环境:Python 3.8.0
- 编译器:Pycharm2023.2.3
深度学习环境:TensorFlow
显卡及显存:RTX 3060 8G
三、前期工作
1、配置环境
import tensorflow as tf
gpus = tf.config.list_physical_devices("GPU")
if gpus:
gpu0 = gpus[0] #如果有多个GPU,仅使用第0个GPU
tf.config.experimental.set_memory_growth(gpu0, True) #设置GPU显存用量按需使用
tf.config.set_visible_devices([gpu0],"GPU")
from tensorflow import keras
import matplotlib.pyplot as plt
import pandas as pd
import numpy as np
import warnings,os,PIL,pathlib
warnings.filterwarnings("ignore") #忽略警告信息
plt.rcParams['font.sans-serif'] = ['SimHei'] # 用来正常显示中文标签
plt.rcParams['axes.unicode_minus'] = False # 用来正常显示负号
2、 导入数据
导入所有猫狗图片数据,依次分别为训练集图片(train_images)、训练集标签(train_labels)、测试集图片(test_images)、测试集标签(test_labels),数据集来源于K同学啊
2.1 加载数据
data_dir = "/home/mw/input/dogcat3675/365-7-data"
data_dir = pathlib.Path(data_dir)
image_count = len(list(data_dir.glob('*/*')))
print("图片总数为:",image_count)
图片总数为: 3400
img_height = 256
img_width = 256
batch_size = 32
"""
关于image_dataset_from_directory()的详细介绍可以参考文章:https://mtyjkh.blog.csdn.net/article/details/117018789
"""
train_ds = tf.keras.preprocessing.image_dataset_from_directory(
data_dir,
validation_split=0.2,
subset="training",
seed=12,
image_size=(img_height, img_width),
batch_size=batch_size)
输出:
Found 3400 files belonging to 2 classes.
Using 2720 files for training.
"""
关于image_dataset_from_directory()的详细介绍可以参考文章:https://mtyjkh.blog.csdn.net/article/details/117018789
"""
val_ds = tf.keras.preprocessing.image_dataset_from_directory(
data_dir,
validation_split=0.2,
subset="validation",
seed=12,
image_size=(img_height, img_width),
batch_size=batch_size)
Found 3400 files belonging to 2 classes.
Using 680 files for validation.
我们可以通过class_names输出数据集的标签。标签将按字母顺序对应于目录名称。
class_names = train_ds.class_names
print(class_names)
[‘cat’, ‘dog’]
2.2 检查数据
for image_batch, labels_batch in train_ds:
print(image_batch.shape)
print(labels_batch.shape)
break
(32, 256, 256, 3)
(32,)
2.3 配置数据集
AUTOTUNE = tf.data.AUTOTUNE
def train_preprocessing(image,label):
return (image/255.0