深度学习数学基础之激活函数与导数

本文介绍了深度学习中的重要概念——激活函数,包括sigmoid、双曲正切和ReLU函数,并通过matplotlib展示了它们的图形。同时,讨论了导数的概念,它是微积分的基础,解释了sigmoid函数的导数公式。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >


活动地址:CSDN21天学习挑战赛

函数与导数

函数

神经网路最常听到的一个名词就是激活函数,那激活函数是什么呢?

百度百科是这样说的,函数,最早由中国清朝数学家李善兰翻译,出于其著作《代数学》。之所以这么翻译,他给出的原因是“凡此变数中函彼变数者,则此为彼之函数”,也即函数指一个量随着另一个量的变化而变化,或者说一个量中包含另一个量。

其实,函数是一种映射关系,通过函数,可以将一个变量转化成另一个变量,而在神经网路中,这个变量是矩阵,是张量。

激活函数

常见的激活函数有:

  • sigmoid函数:
    f ( x ) = 1 1 + e − x f(x) = \frac{1}{1+e^{-x}} f(x)=1+ex1
  • 双曲正切函数:
    f ( x ) = t a n h ( x ) = 2 1 + e − 2 x − 1 f(x) = tanh(x)= \frac{2}{1+e^{-2x}}-1 f(x)=tanh(x)=1+e2x21
  • ReLU函数:
    f ( x ) = { m a x ( 0 , x ) , x ≥ 0 0 f(x) = \begin{cases} max(0,x),\quad x \ge 0 \\ 0 \end{cases} f(x)={ ma
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值