产品数据分析
知识点
- 常用app:抖音
2016上线,2018爆发
- 定位:音乐创意短视频社交平台(符合当前年轻人碎片化时间特性)
- 用户画像:年轻人,中年人为主
- 目标人群及相应指标:
- 创作者:粉丝数量,视频播放量,广告收入/成本
- 观看者:视频内容,功能界面,社交属性, 用户群体
- 版本迭代:
- 增加滤镜
- 社交功能增强,朋友视频放到了显眼位置
- 拍同款功能等
- 缺点:
- 创作时可以选择的音乐偏少,增加音乐版权
- 缺少防沉迷机制,建议显示抖音今日累计观看时长
- 降低内容重复度,不要过度依赖推荐系统
- Hadoop, MapReduce
-
Hadoop:大数据分布式处理框架,主要包含两个模块,MapReduce和HDFS。
-
MapReduce:一种分布式计算框架,用于解决TB数量级问题,主要用于搜索领域,解决海量数据计算问题。可用于处理结构化, 半结构化,非结构化数据。工作原理:
-
第一步对输入的数据进行切片,每个切片分配一个map()任务,map()对其中的数据进行计算,对每个数据用键值对的形式记录,然后输出到环形缓冲区(图中sort的位置)。
-
map()中输出的数据在环形缓冲区内进行快排,每个环形缓冲区默认大小100M,当数据达到80M时(默认),把数据输出到磁盘上。形成很多个内部有序整体无序的小文件。
-
框架把磁盘中的小文件传到Reduce()中来,然后进行归并排序,最终输出。
参考:https://zhuanlan.zhihu.com/p/62135686
- HDFS:Hadoop的框架的一部分,用于存储和处理数据集。它提供了一个容错文件系统在普通硬件上运行。
- HIVE:开发SQL类型脚本用于做MapReduce操作的平台,最早由facebook开发,后来由Apache开发为Apache Hive开源项目。
参考:https://www.yiibai.com/hive/
https://baike.baidu.com/item/hive/67986
-
AARRR模型
参考: http://www.woshipm.com/operate/887464.html -
STAR法则:
- Situation
- 用户的类型和特征是什么
- 在什么情况下用户会进入这里
- 用户为什么需要这个产品
- Target
- 产品要解决什么问题
- 问题的关键点是什么
- 其他功能要求
- Action
- 如何设计产品流程
- 如何提高用户效率
- 如何兼顾技术可行性
- Result
- 产品是否解决了问题
- 产品是否达到了功能要求
- 效果如能量化则为最佳
- LTV(客户价值衡量)
L T V = L T ∗ A P R U LTV = LT * APRU LTV=LT∗APRU
- 假设APRU稳定,可以使用均值。若不稳定,则可以分窗口设值。
- LT的计算:
L T a l l = A ∗ 1 + A ( 1 ) ∗ 1 + A ( 2 ) ∗ 1 + . . . + A ( n ) ∗ 1 L T = L T a l l A = 1 + ∑ i = 1 n R ( i ) \begin{aligned} LT_{all} & = A*1+A(1)*1+A(2)*1+...+A(n)*1 \\ LT &= \frac{LT_{all}}{A} = 1+ \sum_{i=1}^{n}R(i) \end{aligned} LTallLT=A∗1+A(1)∗1+A(2)∗1+...+A(n)∗1=ALTall=1+i=1∑nR(i)
其中 R i R_{i} Ri为第i天的留存率。
若出现天数较少的情况,则需要对Retention Rate做一个预测,y为Retention Rate,x为天数。可以使用的方法:- excel直接拟合看效果
- 时间序列建模ARIMA等
- 深度学习RNN(LSTM)
- 日活DAU
- 定义:产品每天有多少用户来访问(UV)
- 可以理解成当日新增和之前每日新增在当日的留存
- 如何计算:
D A U n = A n + A n − 1 ∗ R 1 + A n − 2 ∗ R 2 + . . . + A 1 ∗ R n − 1 DAU_{n} = A_{n}+A_{n-1}*R_1+A_{n-2}*R_2+...+A_1*R_{n-1} DAUn=An+An−1∗R1+An−2∗R2+...+A1∗Rn−1
假设每日新增为常量:
D A U n = A × ( 1 + ∑ i = 1 n − 1 R i ) DAU_{n} = A \times (1+\sum_{i=1}^{n-1}R_{i}) DAUn=A×(1+i=1∑n−1Ri)
转化为预估留存问题。
- 月活MAU
M A U = ∑ i = 1 30 D A U i − 月 重 复 用 户 数 MAU = \sum_{i=1}^{30}DAU_{i}-月重复用户数 MAU=i=1∑30DAUi−月重复用户数
- 日活提高,月活下降的原因是:月重复用户数增长的相对日活增长的更多,说明用户粘性变强了。
- CAC
- 定义:获取用户的成本
- 用途:ROI = LTV/CAC。若ROI在3左右,比较合适。1以下没有努力的必要。也并非越大越好。
- 日活月活提高分析步骤:
- 新用户:
- 基本策略:渠道推广、市场推广、合作换量、朋友圈分享、老带新等方式。
- 留存率增长策略:提升新用户留存即辅助用户成长,可使用红包吸引,push召回,打卡签到游戏机制等,最重要的还是做好产品体验。找到用户感兴趣的点,不断吸引其关注。
留存三把刀:物质利益绑定、打造成就荣誉、丰富产品功能。
- 老用户:
- 历史回流老用户:这部分老用户可按生命周期划分,查看用户结构,以及各部分用户的留存和访问频次状况,以及用户结构是否健康,在运营战略层面做好应对。例如流失用户占比较高,成熟用户较少,则需要寻找原因,加强流失预警和召回
- 大盘里的老用户根据细分生命周期分别采取不同的应对策略,细分用户画像,业务偏好、场景挖掘,产品拓展,围绕成长、促活、召回三方面目标再拆分。产品功能上push短信和服务号通知触达用户,可参考以上留存三把刀。
- 访问频次的打法同以上拆解,高频业务,游戏化运营机制,会员体系,积分商城等用户管理工具。
-
日活下降分析步骤:
- 确认数据是否准确
- 确认数据是否存在异常
- 维度的拆分
- 新老用户
- 登陆平台,ios,android
- app版本
- 渠道,如app,小程序
- 区域或地域,国家省份
计算影响系数:
(今日量-昨日量)/(今日总量-昨日总量)
- 了解业务具体动作
上步确定了原因后,跟产品,技术,运营人员进行沟通交流,询问最近是否有什么业务上的动作。 - 提供具体的意见
基于量化分析的结果,提出合理改进意见。
-
辛普森悖论
- 前提:两个分组的比例相差比较大。两种性别的分布比重相反。
具体参考:https://wiki.mbalib.com/wiki/%E8%BE%9B%E6%99%AE%E6%A3%AE%E6%82%96%E8%AE%BA
- 2b业务最大的挑战是什么
- 数据量级不太一样
- 企业的相关信息比较少,部分数据特征维度较难获取
-
2b和2c的区别是什么
参考:http://www.woshipm.com/marketing/4061290.html -
人人都是产品经理。
参考 http://www.woshipm.com/ -
框架思维
参考 https://mp.weixin.qq.com/s/f5-pq7cOM8n5jql5yHIxsw