DNN模型loss一直为nan

博主在训练Deep Neural Network (DNN)模型时遭遇loss始终显示为nan的问题,尝试多种解决方案无效。最终发现罪魁祸首竟是数据预处理阶段未彻底清除的NaN值。这个简单的疏忽浪费了宝贵的夜晚时间,特别是在节日里。提醒读者在遇到类似问题时,务必仔细检查原始输入数据。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

DNN模型loss一直为nan

划重点:一直为nan

训练Deep Neural network (DNN) 模型,发现loss一直是nan。 网上查了很多方法都没用。

最后发现,是自己处理数据的时候NaN值没删干净…

就离谱… 我在spyder里面看了一万遍x和y都没检查出来nan

如果,你也是loss一直为nan, 而非训练过程中突然变nan,和我一样再仔细检查下原始输入数据吧 = =


啊,又浪费了一晚上的宝贵时光!还是大过节的!

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值