(动态规划)最短编辑距离

该博客介绍了如何使用动态规划算法来计算两个字符串之间的编辑距离,即通过插入、删除和替换操作将一个字符串转换成另一个所需的最少操作次数。博主详细讲解了状态转移方程的建立,并给出了C++实现代码。动态规划在这里用于优化字符串匹配过程,确保找到最小操作数。

 把a通过若干操作变成b

同样有一个状态集合f[i][j]、、、、、f[i][j]表示a[1~i]->b[1~j]的操作次数的集合

显然它的属性是min

接下来我们看看如何划分这个集合

有题目可以知道有三种方式

1.删除

2.添加

3.修改

动态规划的一般都是从上一个状态开始找

如果我们是要删除a[i]的话那么前提条件就是a[1~i-1]==b[1~j]

也就是f[i][j]=f[i-1][j]+1;

如果是添加一个字符的话那么前提条件就是a[1~i]==b[1~j-1]

也就是f[i][j]=f[i][j-1]+1;

修改的话有必须是要a[i]!=b[j]才会进行修改

#include<iostream>
using namespace std;

const int N=1010;

char a[N],b[N];
int f[N][N];//f[i][j]表示a[1~i]->b[1~j]的操作次数的集合,显然它的属性是min
int n,m;

int main()
{
    cin>>n>>a+1>>m>>b+1;
    for(int i=1;i<=n;i++)f[i][0]=i;
    for(int i=1;i<=m;i++)f[0][i]=i;
    
    for(int i=1;i<=n;i++)
        for(int j=1;j<=m;j++)
        {
            f[i][j]=min(f[i-1][j],f[i][j-1])+1;//找出删除以及添加中的最小的那个操作次数
            if(a[i]==b[j])f[i][j]=min(f[i][j],f[i-1][j-1]);//如果相等的话就不需要+1
            else f[i][j]=min(f[i][j],f[i-1][j-1]+1);//否则+1
        }
    cout<<f[n][m]<<endl;
    return 0;
}

再讲一下初始化,如果把a变成一个长度为0的串也就是串那么它的操作次数就是a的长度

如果a是空串那么它的操作次数就是b的长度

评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值