【万字总结】推荐几个常用数据可视化第三方库(附源码,建议收藏)

本文介绍了Python中三个常用的数据可视化库:Pygal、Plotly和Bokeh,并通过实例展示了如何创建各种图表,包括柱状图、折线图、饼状图和雷达图。此外,还分享了在线编辑和离线模式的使用经验,适合Python初学者和进阶者参考。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

前言

数据可视化的第三方库挺多的,这里我主要推荐三个,分别是 Pygal、Bokeh、Plotly,废话不多说,直接上~~

推荐

数据可视化的库有挺多的,这里推荐几个比较常用的:

  • Matplotlib

  • Pygal

  • Bokeh

  • Seaborn

  • Ggplot

  • Plotly

  • Pyechart

Pygal

pygal官网地址(http://www.pygal.org/en/stable/)

在这里插入图片描述

安装pygal模块

pygal模块的安装非常简单,只需输入一行pip命令即可

1 pip install pygal

安装完成:
在这里插入图片描述

pygal模块介绍

pygal是Python的第三方库,他的主要功能就是数据可视化,即将数字转化成图表的形式来呈现,它提供的图表样式有柱状图、折线图、饼状图、雷达图…

柱状图
单列柱状图
import pygal

view = pygal.Bar()
#图表名
view.title = '柱状图'
#添加数据
view.add('numbers', [0,2,4,6,8,10])
#在浏览器中查看
#view.render_in_browser()
#保存为view.svg(也可以保存为jpg)
view.render_to_file('view.svg')

效果图:
在这里插入图片描述
注意:svg图片用系统自带的图片查看器打开可能会显示全黑色,可以尝试使用Google浏览器打开

多列柱状图
#添加数据
view.add('numbers', [0,2,4,6,8,10])
view.add('numbers_2', [0,1,3,5,7,9])

在这里插入图片描述

堆叠柱状图
view = pygal.StackedBar()

在这里插入图片描述

横向柱状图
view = pygal.HorizontalStackedBar()

在这里插入图片描述

折线图
简单折线图
import pygal

view = pygal.Line()
#图表名
view.title = '折线图'
#添加数据
view.add('numbers', [0,2,4,6,8,10])
view.add('numbers_2', [0,1,3,5,7,9])
#在浏览器中查看
#view.render_in_browser()
#保存为view.svg(也可以保存为jpg)
view.render_to_file('view.svg')

效果图:
在这里插入图片描述

纵向折线图
view = pygal.HorizontalLine()

在这里插入图片描述

堆叠折线图
view = pygal.StackedLine(fill=True)

在这里插入图片描述

饼状图
简单饼状图
import pygal

view = pygal.Pie()
#图表名
view.title = '饼状图'
#添加数据
view.add('A', 31)
view.add('B', 55)
view.add('C', 14)
#保存为view.svg(也可以保存为jpg)
view.render_to_file('view.svg')

效果图:
在这里插入图片描述

多级饼状图
#添加数据
view.add('A', [31,25])
view.add('B', [55,38])
view.add('C', [14,37])

在这里插入图片描述

圆环图
#设置空心圆半径
view = pygal.Pie(inner_radius=0.4)

在这里插入图片描述

半圆图
view = pygal.Pie(half_pie=True)

在这里插入图片描述

雷达图

基础雷达图

import pygal

view = pygal.Radar()
#图表名
view.title = '雷达图'
#添加数据(可以为任意个)
view.add('A', [31,56,34,67,34])
view.add('B', [23,18,57,45,35])
view.add('C', [14,45,76,34,76])
#保存为view.svg(也可以保存为jpg)
view.render_to_file('view.svg')

效果图:
在这里插入图片描述

plotly

plotly 文档地址(https://plot.ly/python/#financial-charts)

Plotly 是一款用来做数据分析和可视化的在线平台,功能非常强大,可以在线绘制很多图形比如条形图、散点图、饼图、直方图等等。而且还是支持在线编辑,以及多种语言python、javascript、matlab、R等许多API。它在python中使用也很简单,直接用pip install plotly就可以了。推荐最好在jupyter notebook中使用,pycharm操作不是很方便。使用Plotly可以画出很多媲美Tableau的高质量图:

图片
这里尝试做了折线图、散点图和直方图,代码如下:
首先导入库

from plotly.graph_objs import Scatter,Layout
import plotly
import plotly.offline as py
import numpy as np
import plotly.graph_objs as go

#setting offilne
plotly.offline.init_notebook_mode(connected=True)

上面几行代码主要是引用一些库,plotly有在线和离线两种模式,在线模式需要有账号可以云编辑。我选用的离线模式,plotly设置为offline模式就可以直接在notebook里面显示了。

1.制作折线图
N = 100
random_x = np.linspace(0,1,N)
random_y0 = np.random.randn(N)+5
random_y1 = np.random.randn(N)
random_y2 = np.random.randn(N)-5

#Create traces
trace0 = go.Scatter(
    x = random_x,
    y = random_y0,
    mode = 'markers',
    name = 'markers'
)
trace1 = go.Scatter(
    x = random_x,
    y = random_y1,
    mode = 'lines+markers',
    name = 'lines+markers'
)
trace2 = go.Scatter(
    x = random_x,
    y = random_y2,
    mode = 
评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值