- 博客(694)
- 收藏
- 关注
原创 18种RAG技术大比拼:谁才是检索增强生成的最佳选择?
RAG技术大比拼:从基础到进阶的检索增强生成方案 本文系统比较了6种主流RAG技术,评估其检索增强生成效果。基础Simple RAG采用固定文本块分割,评分为0.4;语义分块尝试按语义划分,但效果反而下降(0.3);上下文增强检索引入邻居文本块,显著提升至0.6;上下文块头添加描述性标题,评分为0.5;文档增强技术生成相关问题,表现最佳(0.8);查询转换通过重写和分解查询,获得0.5分。实验表明,文档增强技术结合问题生成最能提高检索准确性,为当前最优解决方案。这些发现为RAG系统优化提供了重要参考。
2025-07-15 13:34:06
452
原创 后端开发转大模型应用开发为何容易?好时机
摘要: 后端开发者转型大模型应用开发相对容易,因其已有技术基础,仅需补充大模型相关知识。岗位招聘更看重后端经验与大模型应用能力,而非算法微调。面试内容较少且答案灵活,如RAG优化可自由发挥。学习大模型可参考系统路线:从系统设计、提示词工程到平台开发、知识库应用及微调等。资源包括书籍、报告、视频及开源教程,助力转型为AI时代的技术复合人才。(150字) 注:省略了推广链接与具体学习阶段细节,保留核心逻辑与建议。
2025-07-15 13:09:58
498
原创 技术详解:BERT的分词预处理、输入Embedding、中间编码与输出向量解析_bert分词
BERT是一种基于上下文的预训练语言模型,通过Transformer结构实现对文本的深度编码。其输入为字/词的原始向量,输出为融合全文语义的向量表示,可用于各类下游任务。输入处理包括分词、添加特殊标记(如[CLS]、[SEP])、填充等步骤,BERT最多支持512个字符。针对长文本和OOV问题,可采用截断、滑动窗口或扩充词表等方法解决。BERT的分词器包含BasicTokenizer、WordpieceTokenizer等模块,用于将文本分解为子词并进行ID转换。总体而言,BERT通过多层次语义建模,有效捕
2025-07-14 16:23:05
361
原创 【大模型项目实战】练完这些项目,天下没有再难倒你的大模型
大模型的应用潜力在于与传统业务结合创造智能服务,这需要深入理解业务逻辑和应用场景。通过练习大模型项目,可以积累从微调、分布式训练到RLHF等实战经验,掌握6B至65B模型的开发技术。《大模型项目实战》资料提供完整学习路径,包含丰富案例和免费资源,帮助开发者将理论转化为实际解决方案。多实践项目不仅能提升技术能力,更能挖掘大模型与各行业结合的创新可能性。
2025-07-14 16:18:09
299
原创 AI agent系统中的记忆系统如何开发?一文搞懂大模型的上下文机制
本文介绍了AI Agent系统中记忆系统的开发原理与实现方法。文章指出大模型本身不具备记忆能力,需要通过外挂记忆系统来存储和管理信息。记忆系统采用分层架构,分为短期记忆(存储当前对话)、中期记忆(整合主题信息)和长期记忆(持久化用户数据)。开发中需解决消息体组织、阈值管理和历史信息检索等问题,可采用截断法、摘要压缩法或RAG技术。文章还提供了大模型学习路线和资源,帮助开发者掌握AI应用开发技能。通过合理设计记忆系统,可以有效提升Agent的对话连贯性和个性化响应能力。
2025-07-09 13:15:49
585
原创 Hugging Face开源顶级模型:双模式推理+128K上下文,最强3B
Hugging Face开源30亿参数小模型SmolLM3,性能超越同类3B模型,支持6种语言和128K长文本处理。该模型采用双模式推理设计,开放了完整架构和训练细节,包括三阶段预训练策略(11.2万亿tokens数据)和创新的混合推理方法。通过分组查询注意力、NoPE技术等优化,在384块H100 GPU上训练24天完成。模型还进行了长上下文扩展和推理适应训练,最终通过APO对齐和模型合并技术保持性能。创始人评价其为3B领域的SOTA模型,适合研究和优化。配套提供了基础模型和推理指导模型下载。
2025-07-09 11:59:06
873
原创 2025最新最全【大模型学习路线规划】零基础入门到精通_大模型学习路径
AI大模型学习指南:从基础到实战 这份AI大模型学习资料系统梳理了LLM技术的知识体系,包含七个阶段的学习路径:从基础理论、核心技术到编程工具、实战项目,再到高级开发、私有化部署和前沿技术探索。内容涵盖Python编程、Transformer架构、提示工程、RAG技术等核心知识点,并提供了640套行业报告、视频教程和开源资源。学习者将掌握大模型全栈开发能力,包括微调训练、API应用开发、多模态处理等技能,适用于电商、物流、医疗等多个领域的AI解决方案开发。资料还包含商业化落地方案、面试题库等实用资源,助力开
2025-07-02 20:58:47
946
原创 用通俗易懂的方式讲解:一文详解大模型 RAG(检索增强生成)_rag 大模型
RAG(检索增强生成)技术结合大型语言模型与检索系统,通过外部知识库检索信息,提升生成内容的准确性和时效性,避免模型幻觉问题。模块化RAG采用分层结构(模块类型、功能模块、运算符),增强可扩展性和灵活性,支持多轮检索和结构化数据处理。索引模块的关键挑战包括内容表示不完整、相似性搜索不准确和引用轨迹模糊。块优化需平衡上下文与噪声,滑动窗口虽能增强语义转换,但存在精确度不足等局限。RAG并非替代传统知识库系统,而是作为补充提升自然语言处理效果。
2025-06-27 09:45:00
731
原创 【实战分享】构建企业级RAG(Retrieval-Augmented Generation)知识库的全面实践_企业级rag知识库
本文系统介绍了基于RAG技术的企业知识库构建方法。首先分析了知识库在企业知识管理中的价值,包括解决信息孤岛、提升检索效率等痛点。接着详细解析了RAG技术原理,涵盖文本预处理、文档切片策略、向量化处理等关键技术环节。重点阐述了Milvus向量数据库的选择依据及系统架构设计,并给出Python实现方案。最后提出7项优化方向:智能PDF切分、检索完整性提升、提示词优化、Text-to-SQL实现、多轮对话、智能报表和多智能体交互。附录包含6大核心模块的代码实现要点。该方案为企业构建智能知识管理系统提供了完整的技术
2025-06-27 09:45:00
666
原创 面试大模型工作必备--10道RAG面试题
摘要:本文分享10道RAG(检索增强生成)领域的面试题及答案,涵盖RAG与传统微调的区别、缓解模型幻觉的原理、检索技术、文档处理策略等核心知识点。文章还提供了AI大模型学习路线和资源包,包含640份行业报告、视频教程及开源项目等,帮助读者系统掌握LLM技术。资源可通过扫描二维码免费获取,适合希望入门或进阶AI大模型的开发者学习参考。(150字)
2025-06-27 09:30:00
863
原创 多模态大模型入门指南(非常详细)零基础入门到精通,收藏这一篇就够了_多模态大模型 入门
本文综述了多模态大语言模型(MM-LLMs)的研究进展。首先,将MM-LLMs架构分解为5个核心组件:模态编码器、输入投影器、语言模型骨干、输出投影器和模态生成器,详细分析了各模块的实现方案。其次,梳理了MM-LLMs的两阶段训练流程:多模态预训练和指令微调。研究比较了26种主流MM-LLMs在模型架构和训练数据规模上的差异,并评估了它们在18个视觉语言评测集上的表现,提炼出关键优化方法。最后,展望了未来发展的5个方向:增强模型能力、设计更严格的评测基准、轻量化部署、实现实体交互智能和持续指令优化。该研究系
2025-06-26 07:07:18
674
原创 2025千万别再自学AI大模型了(当心学废了),大模型零基础到精通,看这篇就够了!_智泊ai的大模型课程怎么样
当今科技飞速发展的时代,AI(人工智能)已经成为不可忽视的力量。2025年被许多人视为AI应用的爆发年,AI将如同电力一般融入我们生活的方方面面——从智能助手到各种跨平台应用。它们能够根据我们的语音指令完成点外卖、订机票甚至购买礼物等任务。AI不仅会改变我们与技术互动的方式,还将深刻影响个人之间的效率差距。那些率先拥抱AI工具的人将获得显著的优势,而忽视这一趋势的人可能会逐渐落后。尽管AI的重要性日益凸显,但选择自学AI大模型却并非最佳路径。
2025-06-26 07:03:42
831
原创 大模型RAG实战|构建知识库:文档和网页的加载、转换、索引与存储,零基础入门到精通,收藏这一篇就够了_从零开始使用rag打造知识库
《大模型RAG实战》系列文章将深入讲解如何构建实用的大模型检索增强生成系统,重点聚焦知识库管理、检索效果提升和本地模型部署等关键技术。文章详细介绍了知识库的三类数据来源(文件、网页、数据库)以及LlamaIndex框架处理数据的四个核心步骤:加载数据、转换数据、建立索引和存储数据。通过代码示例展示了如何加载本地文件、网页信息,并实现文本分割和去重功能。该系列最终将形成一套可运行的实用系统,帮助开发者构建高效的RAG问答系统。
2025-06-26 06:50:27
952
原创 【保姆级教程】本地私有化RAG知识库搭建:基于Ollama+AnythingLLM的详细指南_anythingllm rag设置
RAG(检索增强生成)技术通过结合信息检索与语言模型,解决了大模型的知识局限、幻觉问题和数据安全问题。其发展经历了三个阶段:基础阶段(Naive RAG)实现检索与生成的简单结合;进阶阶段(Advanced RAG)优化检索策略和索引方法;模块化阶段(Modular RAG)提供灵活性更强的功能组合。RAG的工作原理是通过检索外部知识库获取相关信息,再指导语言模型生成更准确的答案,适用于问答系统、推荐系统等多个领域。
2025-06-26 06:46:16
907
原创 2025中国十大AI大模型:进展、应用案例与发展趋势,非常详细收藏我这一篇就够了!_国内大模型
2024年中国AI大模型发展迅猛,讯飞星火、文心一言、通义千问等十大模型在文本生成、多模态交互等领域表现突出,已深入医疗、金融、教育等行业应用。国内AI专利数量全球领先,但美国在顶级模型开发上仍占优势。未来趋势包括技术性能提升、多模态融合及行业深度应用,同时需关注伦理与法规。学习资源涵盖系统课程、行业报告及实战项目,助力开发者掌握大模型全栈技能。国内外对比显示,中国在商业化落地上快速推进,而GPT-4 Turbo等国际模型保持评测领先。
2025-06-24 19:54:08
854
原创 全网爆火神书《从零构建大模型》终于有中文版的啦!LLM大模型神仙入门书籍教程分享!
威斯康星大学麦迪逊分校终身教授的《从零构建大模型》中文版正式发布,配套项目实战与代码同步开源。该书采用PyTorch框架,指导读者从零搭建大语言模型,无需高性能设备,普通笔记本电脑即可运行。全书分为六部分:大模型基础理论、文本数据处理、注意力机制编程、GPT模型实现、无监督预训练和模型微调。通过理论讲解与代码实践结合,完整揭示大模型的工作原理与实现细节。现提供免费PDF下载及配套学习资料,扫描文末二维码即可领取。
2025-06-24 19:51:05
448
原创 2025年各大主流AI大模型的核心特点和主要应用场景_2025ai大模型技术
当人类文明的数字神经网络以指数级速度延伸,2025年的AI大模型已不再是实验室中的技术标本,而是演变为重塑社会生产关系的“智能基座”。这一年,全球AI竞赛进入“深水区”——技术突破从单一性能的垂直攀登转向多模态融合的生态重构,商业博弈从参数军备竞赛升级为场景落地的价值深耕。 技术维度上,大模型正突破“语言理解”的单一边界,以视觉、听觉、触觉的多维感知能力,构建起虚实交融的交互界面。
2025-06-23 23:56:50
631
原创 Ollama:本地大模型运行指南,保姆级教程手把手教会你_ollama终端怎么打开
Ollama 是一个基于 Go 语言的开源框架,支持在本地运行大语言模型。文章介绍了 Ollama 的安装方法(支持 macOS 等系统),并详细说明了如何下载和使用大模型,如 gemma:2b 等。安装后可直接在终端与模型对话,还展示了/help、/show等交互命令的使用方式,适合开发者快速上手本地大模型部署与应用。
2025-06-23 23:54:07
792
原创 转型之路:一个后端工程师如何走上大模型算法岗位
2024年职场总结:从后端开发到大模型算法工程师的转型之路 本文作者回顾了2024年的职业发展历程,重点分享了从后端开发成功转型为大模型算法工程师的经历。作为大厂面试官,作者体验了候选人与面试官的双重角色。学术方面取得了发表论文、专利和优秀毕业论文答辩成绩。文章深入探讨了AI工具在工作中的应用,包括代码编写、论文阅读等场景,并预测AI Agent将成为通往通用人工智能的关键路径。作者认为大模型技术正在重塑职场格局,创新型和策略型人才将更具竞争优势。
2025-06-22 09:42:31
1010
原创 万字长文深入浅出教你优雅开发复杂AI Agent
本文系统介绍了AI Agent的开发演进与实践,从单智能体(LLM Agent)到复杂AI Agent(具备规划、记忆和工具使用能力),再到多Agent协作系统。文章结合Golang工程化框架,展示了一个多Agent协同智能助手系统(行程规划、文章解读、深度搜索)的Demo实现,并深入剖析了MCP协议的价值与局限。QQ官方AI伙伴小Q已基于A2A+MCP升级架构,提升了开发效率与系统扩展性。文章旨在提供复杂AI Agent开发的系统性思考与实践指南。
2025-06-22 09:39:10
832
原创 MCP Agents 完整构建指南
MCP Agents构建指南摘要 本文全面介绍了构建MCP Agent的核心知识和技术要点。MCP(Model Context Protocol)是一种用于标准化AI模型上下文交互的开放协议,其架构包含客户端-服务器模型和三层设计:模型上下文层(AI大脑)、协议层(通信神经系统)和运行时层(执行肌肉)。 指南详细列举了12种主流构建框架,包括OpenAI官方SDK、Composio、LastMile AI的mcp-agent等,涵盖Python、TypeScript等多种技术栈,并比较了托管与自托管方案的优
2025-06-22 09:36:58
728
原创 后端程序员如何成功转型为大模型工程师?完整路径解析
在当今快速发展的科技领域,人工智能(AI)尤其是大规模预训练模型(大模型)已经成为了一个炙手可热的话题。对于一位专注于服务器端开发、数据库管理和API设计等任务的后端程序员来说,转向这一新兴且充满活力的领域不仅意味着掌握新的技能和技术栈,更代表着个人职业发展的一次重大飞跃。本文将深入探讨为何以及如何实现这一转变,并提供一个详细的指南来帮助你顺利完成过渡。
2025-06-20 11:41:53
1331
原创 构建企业知识库聊天机器人:Dify应用指南_dify聊天助手教程
在当今数字化时代,企业知识库的建设和维护对于提升工作效率和服务质量至关重要。AI聊天机器人作为知识库的交互界面,可以提供24/7的即时服务。本文将介绍如何使用 Dify 这一工具快速搭建企业知识库聊天机器人,它可以当你企业的职能客服,也可以做你企业内部培训的老师。相比起传统的“智能客服”,加入大语言模型后的AI客服能更清楚用户想问什么问题,在匹配你提供的知识库的内容进行回答,这样看上去会更懂用户,显得没那么智障。
2025-06-20 11:34:09
345
原创 LLM学习必读书单:从入门到精通,看完你就是LLM大师了!!
如果你想深入了解大模型领域,无论是为了学术研究还是实际应用,选择合适的书籍是非常重要的。以下是精选的八本大模型相关书籍,涵盖了从基础理论到高级实践的内容,可以帮助你构建全面的知识体系。
2025-06-19 16:51:59
1094
原创 Gemini开源项目DeepResearch:基于LangGraph的智能研究Agent技术原理与实现
《Gemini DeepResearch:构建自主研究型AI系统的技术解析》 摘要:Google开源项目Gemini DeepResearch结合LangGraph框架与大语言模型,实现了一个具备自主研究能力的智能代理系统。该系统采用基于状态图的多节点协作架构,包含查询生成、并行网络搜索、反思分析和答案综合五大核心阶段,通过Gemini不同模型版本(2.0/2.5 Flash/Pro)的协同工作,实现了智能化的研究流程控制、知识缺口识别和引用管理。技术亮点包括自适应研究循环机制和原生Google Searc
2025-06-19 16:25:00
661
原创 大模型面试就是演戏,胆子越大offer越多
大模型面试备考指南 摘要:文章总结了常见的大模型面试问题及解答策略,包括模型原理、应用场景和优化方法。重点介绍了Transformer架构、注意力机制等核心技术,以及训练优化、性能评估等实践问题。针对求职高峰期,建议提前准备场景题答案,掌握模型结构特点(如多头注意力、位置编码)和优化技巧(分布式训练、模型压缩)。文中提供了标准回答模板,涵盖原理阐述、应用案例和个人经验分享,帮助面试者系统应对技术考察。 (配图:大模型技术架构示意图)
2025-06-18 18:29:16
784
原创 谈谈RAG存在的一些问题和避免方式
摘要: 检索增强生成(RAG)是当前大模型落地的务实方案,但实际应用中存在诸多挑战。本文分析了RAG系统的常见失败原因:分块策略和Top-k算法需调优适配不同文本类型;世界知识缺失导致与常识脱节;多跳问题需复杂推理或外部数据库辅助;信息损失贯穿分块、检索、生成全流程。尽管RAG简单易用,但要实现企业级价值仍需突破技术瓶颈,如通篇理解、多文档整合等。未来需结合知识图谱等增强能力,同时注重可解释性以应对监管要求。
2025-06-18 18:27:54
801
原创 看完这五本书,瞬间对大模型的兴趣达到10000000%
什么也不会就想自学大模型,但却又无从下手。看完这6本书,你的大模型就无敌了!最后一本更是堪称一绝!·第一本《大语言模型基础与前沿》。0基础的朋友可以靠它打开AI大模型世界的大门,适合入门小白。
2025-06-16 22:56:21
607
原创 颠覆认知!用RAG处理表格数据后,我才明白大模型的真实使用门槛
RAG实战:如何让大模型读懂表格数据 大多数开发者以为RAG只需调个API就能搞定,直到面对Excel表格时才意识到真正的挑战——表格数据处理才是RAG的终极考验。本文深入剖析表格数据处理的完整流程,提供可落地的解决方案。 核心方法 表格向量化三步骤 逐行向量化:将每行转为文本描述后生成向量,适合单行查询 逐列向量化:单独处理每列数据,支持字段筛选 整表嵌入:将整个表格转为文本整体处理,适合全局查询 存储方案选择 FAISS:本地快速实验 Chroma:轻量级开源方案 Weaviate:支持元数据过滤 Pi
2025-06-16 22:48:03
710
原创 2025最新AI产品经理成长指南:超全面超详细的爆肝学习路线,一文收藏搞定!_ai人工智能产品经理指南
AIGC产品经理转行指南:2个月上岸方法论 2025年AIGC领域持续火热,多位学员成功实现薪资跃升(涨幅50%-100%)。本文提供可复制的转行路径:1️⃣ 关注"新智元"等专业资讯平台;2️⃣ 研读行业报告建立系统认知;3️⃣ 聚焦文本/图片/音频/视频细分赛道;4️⃣ 系统学习AI算法(大模型/NLP/CV等);5️⃣ 完成对话机器人、AI绘图两大实战项目。建议通过飞书文档搭建知识库,重点突破目前招聘量最大的文本和图片生成方向。转行要趁早,方法论已备好!
2025-06-13 10:30:00
712
原创 本地部署大模型?Ollama 部署和实战,看这篇就够了!_ollama本地部署
本文介绍了如何在本地部署和使用Ollama大模型服务。主要内容包括:1) Ollama在不同系统(Mac、Windows、Linux)的安装方法,其中Linux提供裸机和Docker两种部署方式;2) 服务配置说明,如修改模型存储路径、指定GPU设备等;3) 基本使用指南,包括常用命令解释和官方模型库介绍。Ollama作为便捷的大模型本地部署工具,配合Open WebUI可实现人人拥有大模型自由的目标,适合开发者和AI爱好者快速搭建本地大模型环境。
2025-06-13 10:15:00
939
原创 3步搞定图谱RAG应用:Unstructured+Graph Retriever实战指南
新一代基于图谱的检索增强生成(Graph-based RAG)技术通过结合知识图谱和向量检索,显著提升了AI输出的准确性和上下文相关性。Unstructured工具自动提取文档结构化元数据并存储至Astra DB,简化了知识图谱构建流程;而Graph Retriever库则动态利用这些元数据构建图谱查询,无需专用图数据库。这种方案克服了传统语义检索的局限性,通过显式捕捉文档间关系实现更精准的上下文导航。实际应用表明,该技术可高效处理非结构化数据,为开发人员提供了开箱即用的解决方案,大大降低了实施复杂度。
2025-06-12 21:43:05
1035
原创 复旦大学首本大模型中文书太厉害啦!【大模型书籍推荐】_大语言模型 中文书
【摘要】复旦大学自然语言处理实验室团队推出国内首本《大语言模型入门与实践》专著。该书系统梳理大语言模型的基础理论、预训练技术、指令理解及扩展应用等核心内容,涵盖300余篇前沿论文的深度解析。全书8章内容深入浅出,既包含从数据构建到强化学习的全流程实践细节,也提供配套课件PPT辅助学习。作为填补国内空白的权威指南,该书兼具学术价值与实用意义,既适合高校作为补充教材,也能帮助从业者提升技能,是探索NLP领域大模型技术的重要参考。(149字)
2025-06-12 21:40:17
385
原创 大模型微调(Fine-Tuning)全流程思考
大模型微调的过程💡建议严格按照此流程来,不要跳步,不然可能会做无用功。 比如如果没有好好构建数据集,最后发现微调模型效果不佳是数据集的问题,就事倍功半了。
2025-06-09 19:22:58
531
原创 大模型调用外部工具4大方案深度解析
大模型调用外部工具4大方案深度解析:API、Function Call、LangChain、MCP技术架构对比图
2025-06-04 21:41:28
763
原创 99%的人学大模型的状态,今天教你怎么正确学大模型!
99%的人学大模型的状态:热情、懵逼、放弃。喜欢在网上自学的收藏夹里一大堆吃灰的视频教程,今天教你怎么做开挂玩家。20位大佬爆肝整理的大模型防脱发学习法来了,从入门到封神只需三步:
2025-06-04 21:35:10
738
原创 清华大学新RAG框架:DO-RAG 准确率飙升33%!
清华大学团队提出DO-RAG框架,创新性地将动态知识图谱与检索增强生成技术结合,显著提升专业领域问答系统的准确率。该框架通过多智能体流水线自动构建知识图谱,融合图推理与语义搜索实现双轨检索,并采用三阶段答案生成与校验机制,在数据库领域测试中以94%的准确率领先主流方案33个百分点。实验证明,DO-RAG能有效解决复杂文档关联割裂、专业术语理解不足等问题,模块化设计支持快速迁移至新领域,为知识密集型任务提供了可靠解决方案。
2025-05-29 19:44:05
1026
原创 2025最全面1000+常见AI大模型面试题及答案,助你备战金九银十
大模型面试与优化技术解析 本文系统梳理了大模型相关面试问题及答案,涵盖基础理论、进阶应用、框架使用及优化技术。基础篇解析了主流开源模型体系、语言模型类型及涌现能力原理;进阶篇探讨了输入长度限制、复读机问题及模型选型建议;大模型章节详细介绍了LangChain框架及其应用;分布式训练部分对比了主流框架及并行策略;推理优化章节分析了显存占用原因、硬件性能差异及量化技术特点。全文提供了从理论到实践的全面指导,助力开发者深入理解大模型技术体系及优化方法。
2025-05-29 19:42:55
883
原创 图解 LLM(大语言模型)的工作原理
本文通过通俗易懂的图解方式讲解了大型语言模型(LLM)的工作原理。首先以条件概率为例,解释了LLM预测下一个单词的核心机制——基于上下文计算各单词的条件概率并选择最高概率的单词。接着介绍了损失函数(交叉熵损失和负对数似然)在模型训练中的作用,以及温度参数对生成多样性的影响:低温使输出更确定但缺乏创意,高温增加随机性但可能降低连贯性。最后提供了LLM学习的系统路线图,涵盖从提示词工程到多模态应用等七个阶段,帮助读者掌握AI大模型开发的核心技能。
2025-05-29 19:35:58
908
原创 大模型时代:基层程序员的挑战、机遇与转型之路_大模型时代下传统研发人员应该如何转型
在数字化浪潮的汹涌推进下,大模型——这些集成了深度学习、自然语言处理等先进技术的AI系统,正以前所未有的力量重塑着各行各业,尤其是技术领域。它们凭借高效的数据处理能力、智能化的决策支持以及不断学习进化的特性,逐渐成为企业优化成本、提升效率的重要工具。对于基层程序员而言,这一变革既是挑战也是机遇。————————————————
2025-05-28 21:58:33
1042
空空如也
空空如也
TA创建的收藏夹 TA关注的收藏夹
TA关注的人