基于Pytorch的强化学习(DQN)之 Dueling Network

本文探讨了Dueling Network在DQN中的应用,通过数学推导,提出优势函数的概念,并详细解析了优势网络和状态网络的结构。讲解了如何利用这两个网络来近似最优价值函数和状态函数,以及为何选择这种结构以提高稳定性。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

目录

1. 引言

2. 数学推导

2.1 最优价值函数

2.2 最优状态函数

2.3 优势函数

3. 网络结构

3.1 优势网络

 3.2 状态网络

 3.3 新的DQN


1. 引言

我们之前学习了许多DQN的优化技巧,现在我们再来看看一种有趣的DQN的优化:Dueling network

2. 数学推导

2.1 最优价值函数

我们之前已经学过了最优价值函数 Q^*(s,a)=\underset{\pi}{max}Q_{\pi}(s,a),这里的Q_{\pi}(s,a) 是动作价值函数,最优指的是对策略 \pi 求最优。

2.2 最优状态函数

类比于最优价值函数,我们给出最优状态函数的定义,我们对状态函数V_{\pi}(s)=\underset{a}{max}Q_{\pi}(s,a) 也关于 \pi 求最优便得到 V^*(s)=\underset{\pi}{max}V_{\pi}(s) ,它可以衡量当前局势的好坏。

2.3 优势函数

我们定义优势函数 A^*(s,a)=Q^*(s,a)-V^*(s),下面给出两个引理及其证明

  1. V^*(s)=\underset{a}{max}Q^*(s,a)Proof:\underset{a}{max}Q^*(s,a)=\underset{a}{max}\underset{\pi}{max}Q_{\pi}(s,a)=\underset{\pi}{max}\underset{a}{max}Q_{\pi}(s,a)=\underset{\pi}{max}V_{\pi}(s)=V^*(s)
  2. \underset{a}{max}A^*(s,a)=0 Proof:\underset{a}{max}A^*(s,a)=\underset{a}{max}Q^*(s,a)-\underset{a}{max}V^*(s)=V^*(s)-V^*(s)=0

通过移项和添项我们得到:Q^*(s,a)=A^*(s,a)+V^*(s)-\underset{a}{max}A^*(s,a) 

这给我们提供了一种新的DQN的构建方式,下面具体介绍用这个基于这个公式的神经网络Dueling network的具体结构。 

3. 网络结构

3.1 优势网络

我们用网络A^*(s,a;w^A)来近似 A^*(s,a),它输入当前状态,输出一个动作得分向量。注意优势网络输出的是一个向量

 

 3.2 状态网络

我们用网络V^*(s;w^V) 来近似 V^*(s) ,它输入当前状态,输出一个对当前局势的打分。注意状态网络输出的是一个实数而非向量。

 

 3.3 新的DQN

 我们用 Q^*(s,a;w)=A^*(s,a;w^A)+V^*(s;w^V)-\underset{a}{max}A^*(s,a;w^A)\qquad(w=(w^A,w^V))

 来近似 Q^*(s,a)=A^*(s,a)+V^*(s)-\underset{a}{max}A^*(s,a) ,它输入的是当前状态,输出由三部分组成:一个向量、一个实数、向量中最大得到分量(实数) 。输出也是一个向量,其中向量加上实数就是将向量的每一个分量都加上这个实数。

现在出现一个问题:我们为什么要在网络中加入 \underset{a}{max}A^*(s,a;w^A) 这一项呢?我们先考虑Q^*(s,a;w)=A^*(s,a;w^A)+V^*(s;w^V) ,很容易知道 Q=A+V 这个分解不唯一,这说明AV这两个网络会不稳定,它们只需要分别加减某个常数即可保持 Q 不发生改变,我们希望得到的两个网络是唯一的,于是我们引入\underset{a}{max}A^*(s,a;w^A),网络 A 的变化也会使它变化,比如说 A 变大10,那么A中最大分量也会变大10,两者相减这个变化就被抵消了,那么V也就不发生改变了,保证了两个网络的稳定性。但是在实际应用中实践证明 使用 \underset{a}{mean}A^*(s,a;w^A) 而不是\underset{a}{max}A^*(s,a;w^A)效果会更好。

评论 4
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值