ModeSeq论文阅读

主要特点:出轨迹是迭代了多次,每次出一条,然后去找和真值最近并且出现最早的轨迹,进行监督。
在这里插入图片描述和QCNet一样loss是基于Laplace negative log-likelihood的。传统的WTA的策略只会监督和GT差异最小的那条轨迹。而EMTA策略会监督在RNN结构中找和GT match上的并且是相对更早decode出来的那条轨迹(也就是在RNN结构中认为概率更高的那条)。这里决定是不是match用的是Miss Rate的判定标准。如果没有match上的话,就退回WTA策略。这样就能让model尽早decode出目标的模态,也能提升Miss Rate的表现。

参考:https://zhuanlan.zhihu.com/p/708683454

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值