【问】word embedding 和character embedding 有何不同?

本文探讨了characterembedding与wordembedding的区别,解释了characterembedding的获取方法及其在自然语言处理中的应用价值。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

你的描述总体上是准确的,并且你对 `ELMo` 模型的核心思想的理解是清晰的。下面我来逐段详细分析并补充一些细节,以帮助你更深入理解。 --- ### 你的描述分析 #### ✅ 1. 关于 Word Embedding 的静态性: > 在`Word Embedding`中,词语都是由一个唯一的词向量进行表示的,不根据句子改变而改变 是的,这是传统 `Word2Vec`、`GloVe` 等词嵌入方法的显著特点:**静态词向量**。每个词在词表中只有一个向量,无论它出现在什么样的上下文中。这种静态性使得它们在处理**多义词**(如 `bank`)时表现不佳。 --- #### ✅ 2. 关于多义词的题: > 尽管不同序列中的`bank`的上下文不同,但经语言模型训练时,无论什么序列经过`Word2Vec`,都是对`bank`这个词进行预测,因此占用的是嵌入矩阵中的同一行参数;这样会导致不同的语义被压缩到同一个`Word Embedding`空间,进而导致`Word Embedding`无法区分多义词 这段描述非常到位。在 `Word2Vec` 中,无论是“银行”还是“河岸”的 `bank`,最终都会被映射到同一个词向量中。这就导致模型无法区分上下文中的不同语义。 --- #### ✅ 3. ELMo 的核心思想: > 事先用语言模型训练好了一个单词的`Word Embedding`,但是它此时还无法区分多义词语义,这没关系 > 当使用`Word Embedding`时,此时单词已经具有特定的上下文,这个时候我可以根据上下文单词的语义再去调整单词的 `Word Embedding` 表示,这样经过调整后的 `Word Embedding` 更能表达单词在这个上下文中的具体含义 > `ELMo`模型的核心思想就是:根据当前上下文对`Word Embedding`进行动态调整 这段话准确地抓住了 `ELMo`(Embeddings from Language Models)的本质。 --- ### ✨ ELMo 的进一步解释 #### 模型结构 ELMo 使用的是一个**双向 LSTM(BiLSTM)语言模型**,它从两个方向(从左到右从右到左)来捕捉上下文信息。 - 每个 token 的 ELMo 向量是由多层 BiLSTM 输出的加权组合构成的。 - 这些权重是在具体任务(如 NER、答等)中学习得到的。 #### ELMo 的输入输出 - 输入:一个词序列 $ w_1, w_2, ..., w_n $ - 输出:每个词对应的上下文相关词向量 $ \mathbf{ELMo}_{w_i} $ #### ELMo 的公式(简化) $$ \mathbf{ELMo}_{w_i} = \gamma \cdot \left( s_0 \cdot \mathbf{x}_i^{(0)} + s_1 \cdot \mathbf{h}_i^{(1)} + s_2 \cdot \mathbf{h}_i^{(2)} \right) $$ 其中: - $\mathbf{x}_i^{(0)}$:原始词嵌入word2vec 或 one-hot) - $\mathbf{h}_i^{(1)}, \mathbf{h}_i^{(2)}$:LSTM 的第一层第二层隐藏状态 - $s_0, s_1, s_2$:可学习的标量权重 - $\gamma$:缩放因子(可选) --- ### ✅ 示例代码(使用 `allennlp` 加载 ELMo) ```python from allennlp.modules.elmo import Elmo, batch_to_ids # 配置 ELMo 模型路径(你也可以使用预训练模型) options_file = "https://s3-us-west-2.amazonaws.com/allennlp/models/elmo/2x1024_128_2048cnn_1xhighway/elmo_2x1024_128_2048cnn_1xhighway_options.json" weight_file = "https://s3-us-west-2.amazonaws.com/allennlp/models/elmo/2x1024_128_2048cnn_1xhighway/elmo_2x1024_128_2048cnn_1xhighway_weights.hdf5" elmo = Elmo(options_file, weight_file, num_output_representations=1, dropout=0) # 句子列表 sentences = [["I", "went", "to", "the", "bank"], ["The", "river", "flows", "by", "the", "bank"]] # 转换为字符级别的 tensor character_ids = batch_to_ids(sentences) # 获取 ELMo 向量 embeddings = elmo(character_ids) # embeddings['elmo_representations'] 是一个 list,包含每层的表示 print(embeddings['elmo_representations'][0].shape) # shape: [2, max_length, 1024] ``` --- ### ✅ 总结 你的描述非常准确,尤其在以下几点: - 指出了 Word2Vec 等传统词向量的静态性题 - 提出了多义词导致语义压缩的题 - 准确概括了 ELMo 的核心思想:**根据上下文动态调整词向量** --- ###
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值