- 博客(129)
- 收藏
- 关注
原创 conda环境保存(后期再来整理)
如果需要进一步优化(如最小化备份大小),可以告诉我具体需求!通过以上方法,你可以灵活备份和恢复。如果你的 Conda 环境名为。
2025-07-15 17:29:46
419
原创 Tmux快捷键笔记,从高频到低频
Tmux 是一个强大的终端复用工具,可以让你在单个终端窗口中管理多个会话、窗口和窗格。掌握这些命令后,你可以高效管理终端工作流,无需频繁开关多个终端标签!Ctrl + 方向键。
2025-06-29 16:49:54
284
原创 tmux-copy mode相关配置文件
这行配置是用于鼠标选择文本后自动复制到系统剪贴板的功能,在 macOS 上使用。这个功能让在 tmux 中复制文本变得非常方便,就像在普通终端窗口中一样自然!需要我帮你调整任何快捷键吗?然后在复制模式中就可以用。来切换块选择模式了。
2025-06-29 16:38:05
403
原创 Linux 常用命令
以下是一些 Linux 常用命令的简洁总结,适合快速查阅和日常操作:命令解析:rm:删除文件或目录(remove)。-r 或 --recursive:递归删除目录及其所有子内容(包括子目录和文件)。-f 或 --force:强制删除,不提示确认,忽略不存在的文件或权限错误。 组合效果:rm -rf 会无差别地强制删除指定目录及其中所有内容,且无法撤销。为什么危险?无法恢复:Linux 默认没有回收站机制,执行后文件会直接从磁盘上删除。无确认提示:使用 -f 后,系统不会询问你是否确定删除,即使操作目标是
2025-06-28 11:55:31
323
原创 数据重叠对CLIP零样本能力影响CLIP论文图17笔记
这两张图表(图17左、右图)是CLIP论文中,核心是通过**“数据重叠分析”排除CLIP“作弊”嫌疑**(即CLIP的高零样本准确率是否因为“见过测试集图像”)。图表通过,证明“数据重叠不是CLIP零样本能力的主因”,让CLIP的零样本优势更可信。CIFAR-100。
2025-06-26 14:59:42
728
原创 CLIP中学习“少样本线性探针”(Few-shot Linear Probe)学习笔记
“少样本线性探针”(Few-shot Linear Probe)是机器学习中一种评估预训练模型“特征迁移能力”的标准化方法,核心是用极少的标注数据(每个类别几个样本)训练一个简单的线性分类器,来测试预训练模型提取的特征是否足够通用。它不是一种“训练模型的方法”,而是一种评估预训练模型“迁移潜力”的“试金石”,至今仍是学术界衡量预训练模型能力的重要工具(尤其是在少样本学习和迁移学习领域)。下面结合具体场景和例子,分三部分拆解:假设你有一个预训练好的视觉模型(比如CLIP、ResNet或SimCLRv2),想知
2025-06-25 20:08:53
631
原创 Maxout网络笔记|relu
传统神经网络的神经元通常是“输入→1次线性变换(权重×输入+偏置)→固定激活函数(如ReLU)”。图片中“2 elements in a group”和“3 elements in a group”的图示,本质是。(k是超参数,称为“组内元素数量”),得到k个结果,这k个结果就叫“组内elements”。,Maxout组内有k=2个elements,那么会有2组权重。“elements”(组内元素)是Maxout计算激活值的。(参数不可学习),而Maxout的激活函数是。,最终形成“分段线性凸函数”。
2025-06-25 11:37:47
759
原创 vim学习流程,以及快捷键总结
非常推荐使用vim自带的vimtutor学习,并配有中文版使用方式如下进入后如下一两天时间肯定就能上手了,还是比较快的。
2025-06-22 20:43:34
363
原创 单片机开发日志cv MDK-ARM工具链迁移到MAKE
STM32H7 多 RAM 区域,外设相关数据段必须放在 AXI SRAM(RAM)区,不能放在 DTCMRAM,否则外设无法访问,程序表面正常但外设全失效。迁移工程时,务必检查链接脚本的内存分布!
2025-06-20 17:47:29
173
原创 如何判断期刊学术水平
fill:#333;color:#333;color:#333;fill:none;英文中文拿到期刊名英文 or 中文?查Web of Science/Scopus是否SCI/SCIE/EI查CNKI是否北大核心/CSSCI/CSCD查JCR/中科院分区查影响因子和单位认可度综合判断期刊质量。
2025-06-03 16:29:48
1002
原创 hal库定时器输出不正常分析,铁头山羊hal库教学笔记35集
这次的解决过程很好地展示了:有时候简单直接的方法比复杂的计算更可靠。通过去除不必要的浮点运算和单位转换,我们成功实现了稳定的PWM测量功能。TIM3:生成PWM(Period=999, Pulse=200)PWM捕获值能获取到(CCR1:999 CCR2:199)最终定时器时钟:1MHz(1计数 = 1微秒)printf格式化字符串与数据类型不匹配。系统时钟:HSI/8 = 8MHz。通道1上升沿触发,通道2下降沿触发。使用整数运算代替浮点运算。直接使用计数值作为微秒值。使用%lu替代%.1f。
2025-06-03 12:28:10
377
原创 GitLens 教学(学习更新中)
GitLens 将深度 Git 集成无缝地带入您的编辑器。”(blame 信息),到高效的代码历史导航(修订导航),再到可视化的分支管理(Commit Graph)和现代化的团队协作流程管理(Home View, Launchpad,Cloud Patches),它极大地提升了开发者的体验和工作效率。GitLens 是安装在 Visual Studio Code (VS Code) 中的一个功能极其强大的扩展程序,它直接内嵌在您的代码编辑器中,极大地增强了 VS Code 内置的 Git 功能。
2025-05-30 23:44:28
1253
原创 vscode调试stm32,Cortex Debug的配置文件lanuch.json如何写,日志
【代码】vscode调试stm32,Cortex Debug的配置文件lanuch.json如何写,日志。
2025-05-29 18:09:59
361
原创 嵌赛笔记主控
❌ 不能使用 ESP32 直接控制电机(必须通过 STM32)。- 如果 ESP32-CAM 需要传输图像数据,可以用 SPI 或 I2C 发送压缩后的数据(如 JPEG 流)。| 电机控制、传感器处理、决策 | WiFi/蓝牙通信、摄像头传输 ||| UART/SPI/I2C | 接收STM32指令,返回数据 ||| STM32 单独控制,ESP32 仅用于调试 |—###| STM32 + ESP32(UART 通信) ||| STM32 做决策,ESP32 仅传图 ||,避免依赖 ESP32。
2025-05-29 15:25:10
439
原创 vscode开发stm32,main.c文件中出现很多报错影响开发解决日志
这通常不是代码本身有问题,而是IDE 的代码分析器(IntelliSense、语法检查等)配置不正确,导致它找不到头文件、宏定义等。如果用 VSCode,检查 .vscode/c_cpp_properties.json,把 makefile 里的 include 路径和宏同步进去。你用 make 编译时,makefile 里已经包含了所有正确的路径和宏,但 IDE 的代码分析器用的是自己的配置。将makefile文件中的内容同步过来即可,下面给出一个json文件的模板,每个人的情况不同,针对性修改即可。
2025-05-27 11:31:24
611
原创 macOS烧录stm32程序初步成功
通过此流程,可高效完成 STM32H7 的编译、烧录和调试。遇到问题时,优先检查。终端2:GDB连接OpenOCD。终端1:启动OpenOCD。手动擦除Flash+降速。
2025-05-26 23:39:20
1000
原创 【CubeMX + Makefile + OpenOCD】
尤其适合追求极致效率和可控性的开发者(比如你这种硬核摸鱼选手)。查看实际执行的命令,比 PlatformIO 的黑箱报错更易调试。,而且还能获得更轻量、更可控的开发体验。确实是嵌入式开发的终极偷懒(划掉)高效方案!附:如果你连 Makefile 都懒得写,可以用。都不想敲,可以在 VSCode 的。选择该任务,一键完成编译+烧录。PlatformIO 的。PlatformIO 的。在 CubeMX 生成的。附:如果遇到问题,可以。的魔法效果(需要配置。
2025-05-26 13:58:58
950
3
原创 OpenOCD 与 PlatformIO
OpenOCD 和 PlatformIO 都是嵌入式开发工具,但它们的定位和功能有所不同。如果需要更精细的控制,可以手动调用 OpenOCD;如果是常规开发,直接用 PlatformIO 更高效!
2025-05-26 12:08:44
771
原创 主类网络和无类网络,什么是主类网络边界
主类网络边界(Classful Network Boundary)**则是主类网络划分的关键概念。(1981年RFC 791定义),根据IP地址的第一个字节。理解这些概念有助于正确设计IP地址规划和路由策略!在IP网络设计中,**无类网络(Classless)(1993年RFC 1519引入),,即A/B/C类网络的天然划分界限。,打破了主类网络的固定掩码限制。主类网络(Classful),每类有默认的掩码,
2025-05-23 16:50:20
547
原创 在实际网络部署中,静态路由的优先级通常高于RIP
如果需要具体网络的配置案例(如如何用静态路由实现主备切换),可以告诉我你的设备型号或厂商!,尤其是在中小型网络或对可控性要求高的场景中。
2025-05-21 16:55:54
976
原创 什么规模的企业才会开始需要用ospf
企业是否需要部署主要取决于等因素,而非单纯依据员工数量或设备数量。以下是不同规模企业的路由协议选择建议,以及。
2025-05-21 16:45:46
678
原创 越小越优先和越大越优先
在网络工程中,不同协议对“优先级”的定义可能截然相反,容易混淆。主要分为两类:“越小越优先”和“越大越优先”。**“越小越优先”的典型场景包括路由优先级(AD)、OSPF路径Cost和BGP的AS_PATH长度,这些通常与路径选择相关。“越大越优先”**的典型场景包括OSPF的DR/BDR选举、BGP的Local_Pref和Weight属性,这些多与角色选举或路由偏好相关。常见混淆点包括OSPF的Cost与Priority、BGP的Weight与Local_Pref,以及STP的优先级规则。记忆技巧是:路径
2025-05-21 15:34:10
911
原创 Portal认证和802.1x的区别
Web Portal认证和802.1X认证是两种不同的网络认证技术,主要区别在于认证时机、安全性、适用场景和用户体验。Web Portal认证在用户连接网络后通过浏览器触发,适用于临时用户,部署简单但安全性较低;802.1X认证在连接网络的瞬间触发,适用于企业级网络,安全性高但部署复杂。学校通常混合使用这两种认证方式,根据用户角色、设备类型和网络区域进行区分。例如,学生宿舍可能使用Web Portal认证,而教师办公室则使用802.1X认证。设备未配置802.1X时,网络会降级为Portal认证,强制跳转登
2025-05-20 16:36:26
826
原创 以太网关键技术总结笔记
IEEE 802.3ab(1000BASE-T)、802.3z(光纤千兆):IEEE 802.1Qbv(调度)+ 802.3br(抢占式传输)的缩写、标准、介质和关联性,对吧?以下是按照你的模板整理的。:IEEE 802.3(涵盖物理层与MAC层)
2025-05-20 10:49:59
923
原创 当前主流的传输技术(如OTN、IP-RAN、FlexE等)
在传输网络中,SDH、以太网(Ethernet)和IP业务是三种典型的通信业务类型,它们在技术原理、应用场景和网络层次上有显著区别。下面通过对比它们的特点、协议栈和实际应用来详细说明差异。当前主流的传输技术(如OTN、IP-RAN、FlexE等)各有其独特的应用场景,下面我会逐一展开讲解,并结合实际案例说明它们如何在不同领域发挥作用。(如OTN承载IP-RAN,FlexE叠加在OTN上)。这些技术并非互斥,实际组网中常。
2025-05-20 10:43:52
1289
原创 linux系统中grep,find,search,wget命令的区别
在Linux系统中,grep、find、search(非标准命令)和wget 是功能各异的命令,分别用于文本搜索、文件查找、自定义搜索和网络下载。grep用于在文件内容中搜索字符串或正则表达式,常用选项包括忽略大小写、递归搜索等。find用于在文件系统中按文件名、类型、大小等属性查找文件,并支持执行后续操作。search并非标准命令,可能是用户自定义别名或第三方工具,常用替代方案为locate或whereis。wget用于从网络下载文件,支持断点续传、递归下载等功能。掌握这些命令可以高效管理文件、搜索内容及
2025-05-20 10:29:55
260
原创 通过子接口(Sub-Interface)实现三层接口与二层 VLAN 接口的通信
如果双向 Ping 通,说明配置成功!否则请检查 VLAN 成员端口和子接口绑定。通过子接口绑定 VLAN ID,实现与设备B的。
2025-05-19 21:25:53
504
原创 停等协议(Stop-and-Wait Protocol)
停等协议(Stop-and-Wait Protocol)是一种简单的可靠数据传输协议,适用于不可靠信道。其核心机制是发送方每发送一个数据包后,必须等待接收方的确认(ACK)才能发送下一个包,若超时未收到ACK则重传。该协议通过序列号和超时重传机制解决了数据包丢失、ACK丢失和延迟到达等问题,但其信道利用率较低,尤其在高延迟或高速网络中表现不佳。停等协议属于传输层,主要用于端到端的可靠数据传输。尽管其效率有限,仍被应用于低速率网络、嵌入式系统和教学场景。改进协议如滑动窗口和流水线传输则显著提升了信道利用率。
2025-05-19 15:21:45
836
深度卷积神经网络在大规模图像分类中的应用研究-基于ImageNet数据集
2024-12-25
空空如也
TA创建的收藏夹 TA关注的收藏夹
TA关注的人