张量数据库是一种专门为**多维数组(张量)**设计的高性能数据存储与处理系统,具备以下核心特征
:
-
多维数据支持:直接存储和处理任意阶张量(如 3D 图像、4D 视频、5D 气象场等)。
-
并行计算能力:借助 GPU、分布式集群或张量计算库(如 TensorFlow、PyTorch)实现大规模并行运算。
-
高扩展性:通过分布式架构(如 Apache Cassandra、Google Bigtable)支持水平扩展,应对 PB 级数据。
-
场景聚焦:广泛应用于 机器学习、深度学习、科学计算、图神经网络、材料模拟 等领域
-
。
与“向量数据库”有何区别?
Table
Copy
特性 | 向量数据库 | 张量数据库 |
---|---|---|
数据维度 | 仅支持 1D 向量(如 768 维嵌入) | 支持任意 N 维张量(如 256×256×3) |
典型用途 | 语义检索、RAG 问答 | 科学模拟、训练数据、多维分析 |
硬件优化 | 近似最近邻(ANN)索引 | 张量并行计算(如 cuBLAS、NCCL) |
代表系统 | Milvus、Pinecone、HaiRuo VectorDB | TenGraph、Infinity 0.2 |
如何构建一个张量数据库?
-
选型:
-
专用系统:TenGraph(图+张量混合引擎)
-
、Infinity(支持张量+向量+全文混合检索)
-
-
。
-
自建方案:基于分布式文件系统(如 HDFS)+ 张量计算框架(如 PyTorch DDP)。
-
-
数据建模:
-
定义张量的 shape(如
[batch, channel, height, width]
)、dtype(如float32
)和 分片策略(按维度切分)
-
-
。
-
示例:
Python
-
-
Copy
tensor_meta = { "shape": [1000, 64, 224, 224], "dtype": "float32", "chunk": [100, 64, 224, 224] # 按 batch 维度分片 }
-
-
存储引擎:
-
行优先 vs 列优先:DolphinDB 采用行优先存储张量,兼容 LibTorch 插件
-
-
-
。
-
索引:可为特定维度建立稀疏索引(如时间戳维度)。
-
-
计算加速:
-
集成 cuDNN 或 oneDNN 实现张量卷积、矩阵乘等操作。
-
使用 Ray 或 Dask 分布式调度任务。
-
-
实际案例:
-
材料科学:北京理工大学团队构建的 介电/压电张量数据库,通过高通量第一性原理计算生成,用于机器学习势函数训练
-
-
。
-
图查询:TenGraph 将图数据转换为张量,利用张量并行计算加速 PageRank、子图匹配等操作
-
-
。
-
一句话总结
张量数据库 = “多维数据的超算仓库”,既存储复杂科学数据,也加速 AI 模型训练,是连接 HPC 与 AI 的关键基础设施。