张量数据库

张量数据库是一种专门为**多维数组(张量)**设计的高性能数据存储与处理系统,具备以下核心特征

  • 多维数据支持:直接存储和处理任意阶张量(如 3D 图像、4D 视频、5D 气象场等)。

  • 并行计算能力:借助 GPU、分布式集群或张量计算库(如 TensorFlow、PyTorch)实现大规模并行运算。

  • 高扩展性:通过分布式架构(如 Apache Cassandra、Google Bigtable)支持水平扩展,应对 PB 级数据。

  • 场景聚焦:广泛应用于 机器学习、深度学习、科学计算、图神经网络、材料模拟 等领域


与“向量数据库”有何区别?

Table

Copy

特性向量数据库张量数据库
数据维度仅支持 1D 向量(如 768 维嵌入)支持任意 N 维张量(如 256×256×3)
典型用途语义检索、RAG 问答科学模拟、训练数据、多维分析
硬件优化近似最近邻(ANN)索引张量并行计算(如 cuBLAS、NCCL)
代表系统Milvus、Pinecone、HaiRuo VectorDBTenGraph、Infinity 0.2

如何构建一个张量数据库?

  1. 选型

    • 专用系统:TenGraph(图+张量混合引擎)

、Infinity(支持张量+向量+全文混合检索)

    • 自建方案:基于分布式文件系统(如 HDFS)+ 张量计算框架(如 PyTorch DDP)。

  • 数据建模

    • 定义张量的 shape(如 [batch, channel, height, width])、dtype(如 float32)和 分片策略(按维度切分)

  • 示例:

    Python

    • Copy

      tensor_meta = {
          "shape": [1000, 64, 224, 224],
          "dtype": "float32",
          "chunk": [100, 64, 224, 224]  # 按 batch 维度分片
      }
  • 存储引擎

    • 行优先 vs 列优先:DolphinDB 采用行优先存储张量,兼容 LibTorch 插件

    • 索引:可为特定维度建立稀疏索引(如时间戳维度)。

  • 计算加速

    • 集成 cuDNNoneDNN 实现张量卷积、矩阵乘等操作。

    • 使用 RayDask 分布式调度任务。

  • 实际案例

    • 材料科学:北京理工大学团队构建的 介电/压电张量数据库,通过高通量第一性原理计算生成,用于机器学习势函数训练

  • 图查询:TenGraph 将图数据转换为张量,利用张量并行计算加速 PageRank、子图匹配等操作


一句话总结

张量数据库 = “多维数据的超算仓库”,既存储复杂科学数据,也加速 AI 模型训练,是连接 HPCAI 的关键基础设施。

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值