我们在训练模型之前,有一个可以加快训练速度的方法,那就是对训练数据集进行标准化处理。
为什么需要标准化
z-score标准化
假设数据集的每一个训练样本只有两个特征x1、x2,那么训练集:
X=[x1(1)x1(2)...x1(m)x2(1)x2(2)...x2(m)]X=\begin{bmatrix} x_{1}^{(1)} & x_{1}^{(2)} & ... & x_{1}^{(m)} \\ x_{2}^{(1)} & x_{2}^{(2)}& ... & x_{2}^{(m)} \end{bmatrix}X=[x1(1)x2(1)x1(2)x2(2)......x1(m)x2(m)]
绘制出的图形如图所示,要对其进行标准化分为两步:
1、对训练集进行零均值化处理,顾名思义,也就是处理后的数据集的均值为零。
2、归一化方差。即使方差变为1。
#####分步讲解:
1、怎样来使均值变为0呢?首先我们需要算出数据集的平均值:
μ=∑i=1m(Xi)\mu =\sum_{i=1}^{m}\left ( X^{i} \right )μ=i=1∑m(Xi)
求得的均值是一个向量,这里的x1是所有训练样本x1的均值。x2同理:
μ=[x1x2]\mu =\begin{bmatrix}x_{1}\\ x_{2}\end{bmatrix}μ=[x1x2]
然后用数据集的每一项减去这个均值就可以使整个数据集的均值为0了。
X=X−μX=X-\muX=X−μ
所得X如下所示:
X=[x1(1)−x1x1(2)−x1...x1(m)−x1x2(1)−x2x2(2)−x2...x2(m)−x2]X=\begin{bmatrix} x_{1}^{(1)}-x_{1} & x_{1}^{(2)}-x_{1} & ... & x_{1}^{(m)}-x_{1} \\ x_{2}^{(1)}-x_{2} & x_{2}^{(2)}-x_{2}& ... & x_{2}^{(m)}-x_{2} \end{bmatrix}X=[x1(1)−x1x2(1)−x2x1(2)−x1x2(2)−x2......x1(m)−x1x2(m)−x2]
2、要使方差为1,方差也就是数据偏离均值的程度,观察图(1)第二张图,这是经过零均值化处理后的数据集,现在x1和x2的均值都为0,我们看x1偏离原点(即均值)的程度是不是要大于x2。我们要对其处理以使x1、x2方差都为1。我们首先算出数据集的方差。然后用数据集除以方差即可。
σ2=1m∑i=1m(Xi)2\sigma ^{2}=\frac{1}{m}\sum_{i=1}^{m}\left ( X^{i} \right )^{2}σ2=m1i=1∑m(Xi)2
X=Xσ2X=\frac{X}{\sigma ^{2}}X=σ2X
####总结:
对数据集进行标准化处理,就是让数据集的均值为0,方差为1。把数据集映射到(-1,1)之间。
####总公式:X=X−μσ2X=\frac{X-\mu }{\sigma ^{2}}X=σ2X−μ
除了z-score标准化还有另外的标准化、归一化形式,待更…
为什么标准化可以加快训练
reference:
1、吴恩达深度学习课程