线段树分治

线段树分治是一种离线算法,主要用于在O(nlog2n)的时间复杂度内处理动态区间查询。该算法利用线段树的数据结构,通过对时间进行分治,维护每次询问的状态。在处理如图的边出现和消失导致的二分图问题时,可以通过线段树分治在O(mlog2m)的时间复杂度内解决,避免了O(Tm)的复杂度。文章包括主要思想、算法结构的图解、代码模板及实例分析。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

线段树分治

主要思想

  1. 通过线段树 (一般不动态开点)的结构,对时间进行分治,从而在O(nlog2n)O(nlog_2n)O(nlog2n)的时间中维护出每一次询问的状态。是一种离线算法,如果不带修改,一般也可以用CDQ分治替换。

算法结构

图解数据结构

so easy

代码模板
#include<bits/stdc++.h>
using namespace std;
struct node{
   
   
	int x , y , st , ed;
};

const int N = 100005 , M = 200005 , T = 100005 ;

int n , m , t;
node e[M];
vector<int> ve[M * 4 + 5];

void modi(int l,int r,int k,int x,int y,int now){
   
   
	if(l <= x && y <= r){
   
     ve[now].push_back(k); return; }
	int mid = (x + y) >> 1 , ls = now << 1 , rs = now << 1 | 1;
	if(mid >= l) modi(l,r,k,x,mid,ls);
	if(r > mid) modi(l,r,k,mid+1,y,rs);
}

void dfs(int x,int y,int now,int OK){
   
   
	int ncnt = 0;
	if(!OK)
		for(int i=0
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值