硬币游戏 [博弈论, 思维题]

本文深入探讨了一种硬币游戏的解题策略,通过构建联通块模型,利用并查集算法,分析了游戏的胜负关键因素,即先手玩家如何在特定条件下确保胜利。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

硬 币 游 戏 硬币游戏


正 解 部 分 \color{red}{正解部分}

首先对于无解的情况, 直接判断 h + w h+w h+w 是否奇数, 若是奇数, 则先手必胜, 反之先手必败 .

接下来判断是否有解, 每行每列 都有 状态 0 / 1 0/1 0/1, 分别表示操作与不操作,

对于每个棋子 ( x , y ) (x, y) (x,y),

  • 若其是 正面朝上, x 0 x_0 x0 y 0 y_0 y0 之间连边, x 1 x_1 x1 y 1 y_1 y1 之间连边 .
  • 若其是 反面朝上, x 0 x_0 x0 y 1 y_1 y1 之间连边, x 1 x_1 x1 y 0 y_0 y0 之间连边 .

最后会得到 若干联通块, 显然每个 联通块 都有与其对应的 “反联通块”, 两个 联通块 内的边都是受相同棋子影响而链成的 .

先判断是否有 联通块 内部同时含有类似 x 0 , x 1 x_0, x_1 x0,x1 或者 y 0 , y 1 y_0, y_1 y0,y1 的冲突情况, 若有, 必定 无解,
否则有解, 按照 “双方都会执行最优策略以使得自己得分最高” 的题目条件, 所有硬币必定会翻为正面,

于是现在的问题就是谁会取得最后一步,

计算出每个 联通块 内部的 c 0 , c 1 c_0, c_1 c0,c1 分别表示 状态 0 0 0状态 1 1 1 的个数 的 奇偶性,
然后将 联通块 分类, 分为 ( 1 , 0 ) / ( 0 , 1 ) (1, 0)/(0,1) (1,0)/(0,1), ( 1 , 1 ) (1, 1) (1,1), ( 0 , 0 ) (0, 0) (0,0) 三类, 在下面分别称为 A , B , C A,B,C A,B,C联通块, 个数 奇偶性 分别为 x , y , z x, y, z x,y,z .

C C C 类联通块的操作次数始终为偶数, 不会对先手造成影响, 应忽略不计,

于是影响答案的仅有 x x x y y y 的取值了, 接下来进行 分类讨论,

  • x = 1 , y = 1 x = 1, y = 1 x=1,y=1, 先手选择 ( 0 , 1 ) (0, 1) (0,1) 使得总操作数为 , 先手胜 .
  • x = 0 , y = 1 x = 0, y = 1 x=0,y=1, 总操作数 奇数, 先手胜 .
  • x = 1 , y = 0 x = 1, y = 0 x=1,y=0, 先手选择 ( 0 , 1 ) (0, 1) (0,1) 使得总操作数为 , 先手胜 .
  • x = 0 , y = 0 x = 0, y = 0 x=0,y=0, 总操作数仅能为 , 先手败 .
∴ \therefore x   ∣ ∣   y x\ ||\ y x  y, 则 先手必胜 .

实 现 部 分 \color{red}{实现部分}

实现时, 关于行 x x x 的状态, 使用 2 x 2x 2x 2 x + 1 2x+1 2x+1 表示, 关于列 y y y 的状态, 使用 2 ( y + H ) 2(y + H) 2(y+H) 2 ( y + H ) + 1 2(y + H) + 1 2(y+H)+1 表示 .

然后使用并查集维护联通块即可 .

#include<bits/stdc++.h>
#define reg register

const int maxn = 1005;

int read(){
        char c;
        int s = 0, flag = 1;
        while((c=getchar()) && !isdigit(c))
                if(c == '-'){ flag = -1, c = getchar(); break ; }
        while(isdigit(c)) s = s*10 + c-'0', c = getchar();
        return s * flag;
}

int H;
int W;
int Tot;
int F[maxn];
int c0[maxn];
int c1[maxn];

char C[maxn][maxn];

int Find(int x){ return F[x]==x?x:F[x]=Find(F[x]); }

void Work(){
        H = read(), W = read(), Tot = H+W<<1|1;
        for(reg int i = 1; i <= H; i ++) scanf("%s", C[i]+1);
        for(reg int i = 1; i <= Tot; i ++) F[i] = i, c0[i] = c1[i] = 0;
        for(reg int i = 1; i <= H; i ++)
                for(reg int j = 1; j <= W; j ++)
                        if(C[i][j] == 'e') continue ;
                        else{
                                int x1 = i<<1, x0 = i<<1|1;
                                int y1 = (H+j)<<1, y0 = (H+j)<<1|1;
                                if(C[i][j] == 'x') F[Find(x1)] = Find(y0), F[Find(x0)] = Find(y1);
                                else F[Find(x1)] = Find(y1), F[Find(x0)] = Find(y0);
                        }
        for(reg int i = 1; i <= H+W; i ++)
                if(Find(i<<1) == Find(i<<1|1)){ printf("%d\n", (H+W) & 1); return ; }
        for(reg int i = 2; i <= Tot; i ++){
                int anc = Find(i);
                if(i & 1) c0[anc] ^= 1; else c1[anc] ^= 1;
        }
        int x = 0, y = 0;
        for(reg int i = 2; i <= Tot; i ++){
                if(i != Find(i)) continue ;
                if(c0[i] && c1[i]) y ++;
                else if(c0[i] || c1[i]) x ++;
        }
        x >>= 1, y >>= 1, x &= 1, y &= 1;
        if(x || y) printf("3\n");
        else printf("2\n");
}

int main(){
        int T = read();
        while(T --) Work();
        return 0;
}
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值