或与异或 [背包dp]

这篇博客探讨了如何解决一个数学问题:在给定序列中选择数字,使得其异或值等于或值,同时提供了O(2^13)时间复杂度的正解部分和实现细节,包括预选数字的二进制子集和优化后的异或背包算法,通过这些方法显著减少了计算时间。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

或 与 异 或 或与异或

给出一个序列 a 1 , a 2 , a 3 . . . a n a_1, a_2, a_3...a_n a1,a2,a3...an, 求 选取任意个数使得其 异或起来的值 等于 或起来的值 的⽅案数 .

n ≤ 50 , a i ≤ 2 13 n \le 50, a_i \le 2^{13} n50,ai213


正 解 部 分 \color{red}{正解部分}

考虑 O ( 2 13 ) O(2^{13}) O(213) 枚举最后的答案 x x x,

现在要选出一些数字, 使得它们的 异或和 等于 或和 等于 x x x,

  • 对于要求: 或和 等于 x x x, 则选出的数字必须要在二进制下作为 x x x 的子集, 于是可以通过枚举子集预处理出预选数, 共有 t o t tot tot 个 .
  • 对于要求: 异或和 等于 x x x, 可以对预选数做 背包 求出, 具体来说, 设 F [ i , j ] F[i, j] F[i,j] 表示前 i i i 个数字, 异或和 j j j 的方案数, 最后 F [ t o t , j ] F[tot, j] F[tot,j] 即为对答案的贡献 .

下有优化 .


实 现 部 分 \color{red}{实现部分}

注意 异或背包 不能压缩数组维度,

朴素实现如下 ↓ \downarrow

#include<bits/stdc++.h>
#define reg register
typedef long long ll;

int read(){
        char c;
        int s = 0, flag = 1;
        while((c=getchar()) && !isdigit(c))
                if(c == '-'){ flag = -1, c = getchar(); break ; }
        while(isdigit(c)) s = s*10 + c-'0', c = getchar();
        return s * flag;
}

const int maxn = 55;

int N;
int M;
int A[maxn];
int B[maxn];

ll Ans;
ll F[maxn][20004];

int main(){
        N = read();
        for(reg int i = 1; i <= N; i ++) A[i] = read();
        for(reg int x = 1; x <= (1<<14)-1; x ++){
                int tot = 0;
                for(reg int i = 1; i <= N; i ++)
                        if((A[i] | x) == x) B[++ tot] = A[i];
                F[0][0] = 1;
                for(reg int i = 1; i <= tot; i ++)
                        for(reg int j = x; j >= 0; j --) F[i][j] = F[i-1][j] + F[i-1][j^B[i]];
                Ans += F[tot][x];
        }
        printf("%lld\n", Ans);
        return 0;
}

用时 720 m s 720ms 720ms .

从背包容量着手继续优化, 发现背包的容量为 x x x 的 二进制子集时才有意义, 于是将所有有意义的背包容量预处理, 在进行背包, 具体见代码注释处,

#include<bits/stdc++.h>
#define reg register
typedef long long ll;

int read(){
        char c;
        int s = 0, flag = 1;
        while((c=getchar()) && !isdigit(c))
                if(c == '-'){ flag = -1, c = getchar(); break ; }
        while(isdigit(c)) s = s*10 + c-'0', c = getchar();
        return s * flag;
}

const int maxn = 55;

int N;
int M;
int A[maxn];
int B[maxn];
int C[20004];

ll Ans;
ll F[maxn][20004];

int main(){
        N = read();
        for(reg int i = 1; i <= N; i ++) A[i] = read();
        for(reg int x = 1; x <= (1<<14)-1; x ++){
                int tot = 0, cnt = 0;
                for(reg int i = x; i; i = (i-1)&x) C[++ cnt] = i;
                C[++ cnt] = 0;
                for(reg int i = 1; i <= N; i ++)
                        if((A[i] | x) == x) B[++ tot] = A[i];
                F[0][0] = 1;
                for(reg int i = 1; i <= tot; i ++)
                        for(reg int j = cnt; j >= 1; j --) F[i][C[j]] = F[i-1][C[j]] + F[i-1][C[j]^B[i]];
                Ans += F[tot][x];
        }
        printf("%lld\n", Ans);
        return 0;
}

用时 68 m s 68ms 68ms .

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值