【A Multi-view Graph Contrastive Learning Framework for Cross-Domain Sequential Recommendation】

A Multi-view Graph Contrastive Learning Framework for Cross-Domain Sequential Recommendation (RecSys 2023)

在这里插入图片描述

序列推荐方法在推荐系统中发挥着不可替代的作用,它可以从行为序列中捕获用户的动态偏好。 尽管取得了成功,但这些工作通常会遇到实际应用中普遍存在的稀疏问题。 跨域顺序推荐旨在通过引入相对丰富的源域数据来缓解这一问题。 然而,大多数现有方法独立于每个域捕获用户的偏好,这可能会忽略来自不同域的序列之间的项目转换模式,即用户在一个域中的交互可能会影响他/她在其他域中的下一次交互。 此外,由于目标域和源域中的某些项目仅交互有限次数,因此数据稀疏问题仍然存在。 为了解决这些问题,在本文中,我们提出了一个名为多视图图对比学习(MGCL)的通用框架。 具体来说,我们在域内项目表示视图和域间用户偏好视图中采用对比机制。 前者是共同学习用户序列图中的动态序列信息和跨域全局图中的静态协作信息,而后者是捕获来自不同域的用户偏好的互补信息。

背景-序列跨域推荐

在这里插入图片描述

如上图所示,用户在源域(图书)看了好多《福尔摩斯》相关书籍,那么在目标域(电影),可以为用户推荐关于福尔摩斯相关的电影。

<

### 多视图自适应融合技术在图对比学习中的应用 #### 图对比学习概述 图对比学习旨在通过最大化同一节点的不同增强视图之间的互信息来捕捉图结构的内在特征[^1]。这种方法不仅能够有效利用未标记数据,还能提升模型对于复杂关系的理解能力。 #### 多视图构建 为了实现更丰富的表征,在多视角框架下通常会创建不同类型的子图作为输入给定网络的不同版本。这些变体可以通过多种方式获得,比如随机删除边、采样子图或是基于属性过滤等操作[^3]。每种变换都提供了关于原始图形的独特见解,从而有助于形成更为全面的认知体系。 #### 自适应融合机制 针对来自各个视角的信息整合问题,提出了几种有效的解决方案: - **注意力加权平均法**:采用可训练参数α_i控制各层权重分配比例,使得重要部分得到更多关注的同时保持整体稳定性。 ```python import torch class AttentionFusion(torch.nn.Module): def __init__(self, num_views): super(AttentionFusion, self).__init__() self.attention_weights = torch.nn.Parameter(torch.ones(num_views)) def forward(self, views_embeddings): normalized_weights = torch.softmax(self.attention_weights, dim=0) fused_embedding = sum([w * v for w, v in zip(normalized_weights, views_embeddings)]) return fused_embedding ``` - **动态调整策略**:依据当前任务需求实时改变组合模式,如根据损失函数梯度变化趋势决定下一步侧重方向;或者借助外部反馈信号指导内部结构调整过程。 - **层次化聚合方案**:先分别处理局部区域内的关联性再逐步扩大范围直至全局一致,此过程中允许存在交叉影响以促进信息流通效率。 上述方法共同作用于最终输出之前的关键环节——即如何合理有效地将由不同角度观察所得的结果结合起来,进而达到最优解的目的[^4]。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值