减一与运算计算汉明重量

刷Leetcode还是能学到很多小知识的,今天学到了如何在二进制数中快速输出有几个1, 二进制中1的个数也称为汉明重量

Leetcode 链接:https://leetcode-cn.com/problems/number-of-1-bits/description/

思路很简单:

1、设个数为0,原始数据是n

2、如果n等于0,输出个数,如果不等于零,n = n & (n-1)

3、个数加1,循环(2)

举个例子就很清楚了

n == 01001

n = n & (n-1) = (01001) & (01000) = 01000

n == 01000

n = n & (n-1) = (01000) & (00111) = 00000

这个巧妙的思路能够一步步的把最后一个1去除,从而得到二进制数中1的个数

上个代码:

#encoding=utf-8
import numpy as np


class Solution(object):
    def hammingWeight(self, n):
        """
        :type n: int
        :rtype: int
        """
        ans = 0
        while n > 0:
            tmp = n - 1
            n &= tmp
            ans += 1
        return ans


 

### 汉明重量的定义计算方法 汉明重量(Hamming Weight)是指在个二进制字符串中,非零位(即 `1` 的数量)的总数。例如,给定二进制字符串 `10011010`,其中共有 4 个 `1`,因此该字符串的汉明重量为 4。 以下是几种常见的汉明重量计算方法及其 Python 实现: --- #### 方法:逐位遍历法 通过逐检查每位是否为 `1` 来统计总数量。这种方法简单直观,适用于任何长度的整数。 ```python def hamming_weight_bitwise(n): count = 0 while n: count += n & 1 # 判断最低位是否为1 n >>= 1 # 右移位 return count ``` 此方法的时间复杂度为 O(k),其中 k 是输入数值的二进制表示中的位数[^1]。 --- #### 方法二:Brian Kernighan 算法 利用按位操作技巧少不必要的迭代次数。每次循环都会清除掉最右侧的个 `1`,直到整个数值变为 `0`。 ```python def hamming_weight_kernighan(n): count = 0 while n: n &= n - 1 # 清除最右边的1 count += 1 return count ``` 这种优化后的算法平均时间复杂度更低,在稀疏分布的情况下表现更优[^3]。 --- #### 方法三:查表法 预先构建个小范围内的汉明权重查找表,再分段处理大整数。适合固定大小的数据类型如 32 或 64 位整型。 ```python # 预先创建个字节级别的hamming weight查询表 lookup_table = [bin(i).count('1') for i in range(256)] def hamming_weight_lookup(n): result = 0 while n != 0: result += lookup_table[n & 0xff] # 提取低8位并查表 n >>= 8 # 移动到下个字节 return result ``` 这种方式可以显著提高性能特别是当频繁调用时因为少了重复运算量。 --- ### 性能对比分析 | **方法** | **优点** | **缺点** | |------------------|--------------------------------------|--------------------------| | 逐位遍历法 | 易于理解 | 效率较低 | | Brian Kernighan | 少不必要的比较 | 对密集'1's效率稍逊 | | 查表法 | 极高的执行速度 | 占用额外内存 | 实际应用应根据具体场景需求权衡选择合适的技术方案[^1]。 ---
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值