🌟 大家好,我是“没事学AI”!
🤖 在AI的星辰大海里,我是那个执着的航海者,带着对智能的好奇不断探索。
📚 每一篇技术解析都是我打磨的罗盘,每一次模型实操都是我扬起的风帆。
💻 每一行代码演示都是我的航线记录,每一个案例拆解都是我的藏宝图绘制。
🚀 在人工智能的浪潮中,我既是领航员也是同行者。让我们一起,在AI学习的航程里,解锁更多AI的奥秘与可能——别忘了点赞、关注、收藏,跟上我的脚步,让“没事学AI”陪你从入门到精通!
1. Docker下载
1.1 Docker简介
Docker 是一个开源的容器化平台,它允许开发者将应用程序及其依赖项(如库、配置文件等)打包到一个标准化的单元(称为容器)中,确保应用在任何支持 Docker 的环境中都能以相同的方式运行。这种 “一次构建,到处运行” 的特性,有效解决了开发、测试和生产环境不一致导致的 “在我电脑上能运行” 问题。
1.2 核心概念
-
容器(Container)
-
容器是 Docker 的基本运行单元,是一个独立、可执行的软件包,包含应用程序及其所有依赖(代码、运行时、库、环境变量等)。
-
与传统虚拟机不同,容器不包含完整的操作系统,而是共享主机的内核,因此启动更快、资源占用更少(通常以毫秒级启动,占用 MB 级内存)。
-
-
镜像(Image)
-
镜像是容器的 “模板”,是一个只读的文件系统,包含运行应用所需的所有内容(代码、库、环境变量、配置文件等)。
-
容器是镜像的运行实例,可以通过镜像创建多个容器(类似通过类创建多个对象)。
-
-
Dockerfile
-
用于构建镜像的文本文件,包含一系列指令(如安装依赖、复制文件、设置环境变量等),通过
docker build
命令可生成镜像。
-
-
仓库(Repository)
-
用于存储和分发镜像的平台,类似代码仓库(如 GitHub)。
-
最常用的公共仓库是 Docker Hub,包含大量官方和社区镜像(如 Nginx、MySQL 等);企业也可搭建私有仓库(如 Harbor)。
-
-
Docker 引擎(Docker Engine)
-
Docker 的核心运行环境,包含守护进程(
dockerd
)、命令行工具(docker
)和 API,负责管理容器和镜像。
-
1.3 下载地址
Docker: Accelerated Container Application Development
2. ollama下载
2.1 ollama简介
Ollama 是一个开源工具,旨在简化化本地运行和管理大型语言模型(LLM)的过程,让开发者和用户能够在本地设备(如个人电脑、服务器)上轻松部署和运行 AI 模型,无需依赖云端服务。
2.2 核心特点
-
本地运行:支持在个人计算机或私有服务器上直接运行大语言模型,无需上传数据到云端,增强数据隐私和安全性。
-
简单易用:通过简洁的命令行接口(CLI)操作,无需复杂配置,几分钟分钟内即可启动模型。
-
多模型支持:内置支持多种主流开源模型,如 Llama 3、Mistral、Gemini、Phi、Qwen 等,用户可直接下载运行。
-
轻量化设计:优化了模型运行的资源占用,使得普通硬件(甚至部分笔记本电脑)也能运行大模型。
-
可扩展性:支持自定义模型和微调,允许开发者根据需求调整模型参数或集成新模型。
2.3 下载地址
3. Coze Studio下载
3.1 Coze Studio简介
Coze Studio是一站式 AI Agent 开发工具。提供各类最新大模型和工具、多种开发模式和框架,从开发到部署,为你提供最便捷的 AI Agent 开发环境。
Coze Studio,源自服务了上万家企业、数百万开发者的「扣子开发平台」,我们将它的核心引擎完全开放。它是一个一站式的 AI Agent 可视化开发工具,让 AI Agent 的创建、调试和部署变得前所未有的简单。通过 Coze Studio 提供的可视化设计与编排工具,开发者可以通过零代码或低代码的方式,快速打造和调试智能体、应用和工作流,实现强大的 AI 应用开发和更多定制化业务逻辑,是构建低代码 AI 产品的理想选择。Coze Studio 致力于降低 AI Agent 开发与应用门槛,鼓励社区共建和分享交流,助你在 AI 领域进行更深层次的探索与实践。
3.2 核心功能
-
提供 AI Agent 开发所需的全部核心技术:Prompt、RAG、Plugin、Workflow,使得开发者可以聚焦创造 AI 核心价值。
-
开箱即用,用最低的成本开发最专业的 AI Agent:Coze Studio 为开发者提供了健全的应用模板和编排框架,你可以基于它们快速构建各种 AI Agent ,将创意变为现实。
3.3 技术实现
Coze Studio 的后端采用 Golang 开发,前端使用 React + TypeScript,整体基于微服务架构并遵循领域驱动设计(DDD)原则构建。为开发者提供一个高性能、高扩展性、易于二次开发的底层框架,助力开发者应对复杂的业务需求。
3.4 下载地址
https://github.com/coze-dev/coze-studio
4. Ollama模型下载
4.1 嵌入式模型下载
ollama pull unclemusclez/jina-embeddings-v2-base-code
4.2 chat模型下载
ollama pull deepseek-r1:1.5b
5. Docker安装Coze Studio
5.1 下载源码
5.2 配置模型
cd coze-studio cp backend/conf/model/template/model_template_ollama.yaml backend/conf/model/model_template_ollama.yaml
用以下内容替换model_template_ollama.yaml
id: 68010
name: deepseek-r1
icon_uri: default_icon/ollama.png
icon_url: ""
description:
zh: ollama 模型简介
en: ollama model description
default_parameters:
- name: temperature
label:
zh: 生成随机性
en: Temperature
desc:
zh: '- **temperature**: 调高温度会使得模型的输出更多样性和创新性,反之,降低温度会使输出内容更加遵循指令要求但减少多样性。建议不要与“Top p”同时调整。'
en: '**Temperature**:\n\n- When you increase this value, the model outputs more diverse and innovative content; when you decrease it, the model outputs less diverse content that strictly follows the given instructions.\n- It is recommended not to adjust this value with \"Top p\" at the same time.'
type: float
min: "0"
max: "1"
default_val:
balance: "0.8"
creative: "1"
default_val: "1.0"
precise: "0.3"
precision: 1
options: []
style:
widget: slider
label:
zh: 生成多样性
en: Generation diversity
- name: max_tokens
label:
zh: 最大回复长度
en: Response max length
desc:
zh: 控制模型输出的Tokens 长度上限。通常 100 Tokens 约等于 150 个中文汉字。
en: You can specify the maximum length of the tokens output through this value. Typically, 100 tokens are approximately equal to 150 Chinese characters.
type: int
min: "1"
max: "4096"
default_val:
default_val: "4096"
options: []
style:
widget: slider
label:
zh: 输入及输出设置
en: Input and output settings
meta:
protocol: ollama
capability:
function_call: true
input_modal:
- text
input_tokens: 128000
json_mode: false
max_tokens: 128000
output_modal:
- text
output_tokens: 16384
prefix_caching: false
reasoning: false
prefill_response: false
conn_config:
base_url: "http://host.docker.internal:11434"
api_key: ""
timeout: 0s
model: "deepseek-r1:1.5b"
temperature: 0.6
frequency_penalty: 0
presence_penalty: 0
max_tokens: 4096
top_p: 0.95
top_k: 20
stop: []
custom: {}
status: 0
cd docker cp .env.example .env
# 修改.env配置文件
# embedding type: openai / ark / ollama / http
export EMBEDDING_TYPE="ollama" # ollama embedding
export OLLAMA_EMBEDDING_BASE_URL="http://host.docker.internal:11434" export OLLAMA_EMBEDDING_MODEL="unclemusclez/jina-embeddings-v2-base-code:latest" export OLLAMA_EMBEDDING_DIMS="768"
5.3 启动服务
docker compose --profile "*" up -d
5.4 访问服务
http://localhost:8888/
6. 创建知识库
点击资源库-》点击资源-》点击知识库-》添加内容
7. 创建智能体
点击项目开发-》点击创建-》点击创建智能体-》添加知识库-》发布
8. 发布智能体
9. 检索知识库
🌈 我是没事学 AI!要是这篇文章让你学 AI 的路上有了点收获:
👁️ 【关注】跟我一起挖 AI 的各种门道,看看它还有多少新奇玩法等着咱们发现
👍 【点赞】为这些有用的 AI 知识鼓鼓掌,让更多人知道学 AI 也能这么轻松
🔖 【收藏】把这些 AI 小技巧存起来,啥时候想练手了,翻出来就能用
💬 【评论】说说你学 AI 时的想法和疑问,让大家的思路碰出更多火花
学 AI 的路还长,咱们结伴同行,在 AI 的世界里找到属于自己的乐趣和成就!