🌈 我是“没事学AI”,meishixueai, 欢迎咨询、交流,共同学习:
👁️ 【关注】我们一起挖 AI 的各种门道,看看它还有多少新奇玩法等着咱们发现
👍 【点赞】为这些有用的 AI 知识鼓鼓掌,让更多人知道学 AI 也能这么轻松
🔖 【收藏】把这些 AI 小技巧存起来,啥时候想练手了,翻出来就能用
💬 【评论】说说你学 AI 时的想法和疑问,让大家的思路碰出更多火花
👉 关注获取更多AI技术干货,点赞/收藏备用,欢迎评论区交流学习心得! 🚀
目录
一、缓存与数据库一致性问题剖析
在分布式系统蓬勃发展的当下,缓存与数据库的数据一致性问题成为众多开发者面临的挑战。以电商系统为例,商品库存数据在数据库中更新后,若缓存未能及时同步,用户可能看到错误的库存信息,影响购物体验。从技术原理层面来看,主要存在异步更新延迟和大数据特性带来的挑战。数据库主从同步或缓存更新异步化,会造成数据延迟;海量数据分片与热点数据倾斜,像明星微博的大量访问,会加剧数据不一致的风险 。
二、FlinkCDC技术核心解析
2.1 FlinkCDC原理
FlinkCDC即Flink的变更数据捕获技术,它通过对数据库进行全量快照和实时捕获变更数据,实现数据的同步。启动时,FlinkCDC会对数据库进行全量快照,保证数据源和Flink中的数据初始状态一致。运行过程中,每次捕获到变更数据,先缓存到内存,在检查点提交到Flink处理分析。它还利用数据库事务机制和支持Flink的Exactly - Once语义,确保数据精确一次性处理,保证数据一致性。
2.2 FlinkCDC在数据同步中的优势
FlinkCDC天然支持分布式处理,适用于海量数据场景。相比传统的数据同步方式,它能更高效地处理大规模数据的变更。在电商数据同步场景中,面对海量商品数据的频繁更新,FlinkCDC能快速、准确地将数据库变更同步到其他存储或计算系统,提升数据处理的实时性和准确性。
2.3 示例代码
import org.apache.flink.streaming.api.environment.StreamExecutionEnvironment;
import org.apache.flink.table.api.EnvironmentSettings;
import org.apache.flink.table.api.Table;
import org.apache.flink.table.api.TableEnvironment;
import org.apache.flink.table.api.bridge.java.StreamTableEnvironment;
import org.apache.flink.types.Row;
public class FlinkCDCDemo {
public static void main(String[] args) throws Exception {
StreamExecutionEnvironment env = StreamExecutionEnvironment.getExecutionEnvironment();
env.setParallelism(1);
EnvironmentSettings settings = EnvironmentSettings.newInstance().useBlinkPlanner().inStreamingMode().build();
StreamTableEnvironment tEnv = StreamTableEnvironment.create(env, settings);
// 定义MySQL数据源表
String mysqlSourceDDL = "CREATE TABLE mysql_source (" +
"id INT," +
"name VARCHAR(255)," +
"PRIMARY KEY (id) NOT ENFORCED" +
") WITH (" +
"'connector' ='mysql - cdc'," +
"'hostname' = 'localhost'," +
"'port' = '3306'," +
"'username' = 'root'," +
"'password' = 'password'," +
"'database-name' = 'test'," +
"'table-name' = 'user'" +
")";
tEnv.executeSql(mysqlSourceDDL);
// 读取MySQL数据
Table mysqlTable = tEnv.from("mysql_source");
// 打印输出数据(这里可替换为实际的数据处理逻辑,如写入Redis等)
tEnv.toChangelogStream(mysqlTable).print();
env.execute("FlinkCDC MySQL to Console");
}
}
上述代码实现了从MySQL数据库中通过FlinkCDC读取数据,并打印到控制台。其中,定义了MySQL数据源表的相关配置,包括连接信息、数据库名和表名等。运行代码时,确保MySQL数据库配置正确,且对应的表存在。
三、MySQL与Redis协同工作机制
3.1 MySQL与Redis在缓存架构中的角色
MySQL作为关系型数据库,负责持久化存储大量结构化数据,保证数据的完整性和一致性。Redis作为缓存数据库,将热点数据存储在内存中,提供高速的数据访问,降低MySQL的读写压力。在内容资讯平台中,文章数据存储在MySQL,热门文章的详情缓存到Redis,用户请求时优先从Redis获取数据,提升响应速度。
3.2 数据同步策略
常见的数据同步策略有先更新数据库再删除缓存、先删除缓存再更新数据库、先写MySQL通过Binlog异步更新Redis等。以先更新数据库再删除缓存为例,先保证数据库数据更新成功,然后删除缓存,下次读取时从数据库加载最新数据。这种方式实现简单,但在删除缓存前有读请求会读到旧数据,删除缓存失败会导致缓存数据长时间不一致 。
3.3 示例代码
import redis.clients.jedis.Jedis;
public class MySQLRedisSyncExample {
private static final String REDIS_HOST = "localhost";
private static final int REDIS_PORT = 6379;
public static void main(String[] args) {
// 模拟更新MySQL数据(这里只是示例,实际需要数据库连接操作)
updateMySQLData();
// 删除Redis缓存
try (Jedis jedis = new Jedis(REDIS_HOST, REDIS_PORT)) {
jedis.del("user:1");
System.out.println("Redis缓存已删除");
} catch (Exception e) {
e.printStackTrace();
}
}
private static void updateMySQLData() {
// 实际更新MySQL数据的逻辑,需引入数据库驱动,建立连接等操作
// 这里简单模拟更新成功
System.out.println("MySQL数据已更新");
}
}
上述代码模拟了先更新MySQL数据,再删除Redis缓存的操作。在实际应用中,updateMySQLData
方法需要引入数据库驱动,如JDBC,建立与MySQL的连接,执行具体的更新SQL语句。同时,确保Redis服务正常运行,且REDIS_HOST
和REDIS_PORT
配置正确。
四、基于FlinkCDC实现MySQL与Redis数据一致性保障
4.1 整体架构设计
利用FlinkCDC监听MySQL的Binlog,捕获数据变更事件。将变更数据发送到消息队列(如Kafka),Flink消费消息队列中的数据,并根据数据变更类型对Redis进行相应的更新操作。这样,当MySQL数据发生变化时,FlinkCDC能及时感知并同步到Redis,保障数据一致性。
4.2 关键代码实现
import org.apache.flink.api.common.serialization.SimpleStringSchema;
import org.apache.flink.streaming.api.datastream.DataStreamSource;
import org.apache.flink.streaming.api.environment.StreamExecutionEnvironment;
import org.apache.flink.streaming.connectors.kafka.FlinkKafkaConsumer;
import redis.clients.jedis.Jedis;
import java.util.Properties;
public class FlinkCDCRedisSync {
private static final String KAFKA_BOOTSTRAP_SERVERS = "localhost:9092";
private static final String KAFKA_TOPIC = "mysql - cdc - topic";
private static final String REDIS_HOST = "localhost";
private static final int REDIS_PORT = 6379;
public static void main(String[] args) throws Exception {
StreamExecutionEnvironment env = StreamExecutionEnvironment.getExecutionEnvironment();
Properties properties = new Properties();
properties.setProperty("bootstrap.servers", KAFKA_BOOTSTRAP_SERVERS);
properties.setProperty("group.id", "flink - kafka - group");
DataStreamSource<String> kafkaStream = env.addSource(new FlinkKafkaConsumer<>(KAFKA_TOPIC, new SimpleStringSchema(), properties));
kafkaStream.addSink(new RedisSink());
env.execute("FlinkCDC Kafka to Redis");
}
private static class RedisSink implements org.apache.flink.streaming.api.functions.sink.SinkFunction<String> {
@Override
public void invoke(String value, Context context) throws Exception {
try (Jedis jedis = new Jedis(REDIS_HOST, REDIS_PORT)) {
// 解析Kafka消息,根据消息内容更新Redis
// 假设消息格式:key:value,简单示例
String[] parts = value.split(":");
jedis.set(parts[0], parts[1]);
System.out.println("Redis已更新: " + value);
} catch (Exception e) {
e.printStackTrace();
}
}
}
}
上述代码实现了通过FlinkCDC从Kafka消费数据,并将数据更新到Redis。首先配置了Kafka和Redis的连接信息,创建了从Kafka读取数据的流。然后定义了一个RedisSink
,在invoke
方法中解析Kafka消息并更新Redis。运行代码前,需确保Kafka服务和Redis服务正常运行,对应的Kafka主题已创建,并且Flink环境配置正确。
五、总结与展望
通过FlinkCDC、MySQL和Redis的协同工作,能够有效地保障缓存数据一致性。FlinkCDC在数据捕获和同步方面发挥了强大的作用,MySQL提供稳定的数据存储,Redis实现高速的数据访问。在实际应用中,根据业务场景选择合适的数据同步策略和技术方案至关重要。未来,随着技术的不断发展,分布式系统中的数据一致性问题将得到更高效的解决,为用户带来更优质的服务体验。