在二叉链表中,我们只知道每个结点指向其左右孩子结点的地址,而不知道每个结点的前驱后继。要想知道,必须遍历一次。为了避免这种情况,我们可以创建指向前驱和后继的指针。这种指向前驱和后继的指针称为线索,加上线索的二叉链表称为线索链表,相应的二叉树就被称为线索二叉树。
可以看出,其实线索二叉树等于是把一颗二叉树转变成了一个双向链表。然而这样又存在着问题,无法区分某一结点的lchild是指向它的左孩子还是指向它的前驱,某一结点的rchild是指向它的右孩子还是指向它的后继。因此,在每个结点中再增设两个标志域,ltag以及rtag。
线索二叉树的结构代码如下:
/* 二叉树的二叉线索存储结构定义 */
typedef enum {Link, Thread} PointerTag;
/* Link==0表示指向左右孩子指针,Thread==1表示指向前驱或者后继的线索 */
typedef struct BiThrNode //二叉线索存储结点结构
{
TElemType data; //结点数据
struct BiThrNode *lchild, *rchild; //左右孩子指针
PointerTag LTag;
PointerTag RTag; //左右标志
}BiThrNode, *BiThrTree;
线索化的实质就是将二叉链表中的空指针改为前驱或者后继的线索。线索化的过程就是在遍历时修改空指针的过程。
中序遍历线索化的递归函数代码如下:
BiThrTree pre; //全局变量,始终指向刚刚访问过的结点
void InThreading(BiThrTree p)
{
if(p)
{
InThreading(p->lchild); //递归左子树线索化
if(!p->lchild) /* 没有左孩子 */
{
p->LTag = Thread; //前驱线索
p->lchild = pre; //左孩子指针指向前驱
}
if(!pre->child) /* 没有右孩子 */
{
pre->RTag = Thread; //后继线索
pre->rchild = p; //前驱右孩子指针指向后继
}
pre = p; //保持pre指向p的前驱
InThreading(p->rchild); //递归右子树线索化
}
}