N4BiasFieldCorrection

本文介绍了MRI图像处理中常见的偏置场问题及其对图像质量的影响,并提供了使用Python中的nipype和SimpleITK库进行偏置场校正的示例代码。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

诸如扫描仪中的患者位置,扫描仪本身以及许多未知问题等因素可导致MR图像上的亮度差异。 换句话说,强度值(从黑色到白色)可以在同一组织内变化。 这被称为偏置场。 这是一种低频平滑的不良信号,会破坏MR图像。 偏置场导致MRI机器的磁场中的不均匀性。 如果未校正偏置字段将导致所有成像处理算法(例如,分段(例如,Freesurfer)和分类)输出不正确的结果。 在进行分割或分类之前,需要预处理步骤来校正偏置场的影响

如下图所示:

python  中很多矫正偏置场的三方库,如nipype SimpleITK 都有提供,nipype 的interfaces.ants 需要单独安装ANT,速度较快,SimpleITK的

N4BiasFieldCorrection 比较耗时,以下代码示例了优先使用nipype 进行偏置场矫正,如存在问题(ANT 安装不成功等)再使用SimpleITK。本人经历如下:window 10  配置ANT 不成功,使用SimpleITK,发现不是一般的慢,代码如下:
import SimpleITK as sitk
from nipype.interfaces.ants import N4BiasFieldCorrection
import os


def correct_bias(in_file, out_file, image_type=sitk.sitkFloat64):
    """
    Corrects the bias using ANTs N4BiasFieldCorrection. If this fails, will then attempt to correct bias using SimpleITK
    :param in_file: nii文件的输入路径
    :param out_file: 校正后的文件保存路径名
    :return: 校正后的nii文件全路径名
    """
    # 使用N4BiasFieldCorrection校正MRI图像的偏置场
    correct = N4BiasFieldCorrection()
    correct.inputs.input_image = in_file
    correct.inputs.output_image = out_file
    try:
        done = correct.run()
        return done.outputs.output_image
    except IOError:
        warnings.warn(RuntimeWarning("ANTs N4BIasFieldCorrection could not be found."
                                     "Will try using SimpleITK for bias field correction"
                                     " which will take much longer. To fix this problem, add N4BiasFieldCorrection"
                                     " to your PATH system variable. (example: EXPORT PATH=${PATH}:/path/to/ants/bin)"))
        print("ANTs N4BIasFieldCorrection could not be found."
                                     "Will try using SimpleITK for bias field correction"
                                     " which will take much longer. To fix this problem, add N4BiasFieldCorrection"
                                     " to your PATH system variable. (example: EXPORT PATH=${PATH}:/path/to/ants/bin)")
        input_image = sitk.ReadImage(in_file, image_type)
        output_image = sitk.N4BiasFieldCorrection(input_image, input_image > 0)
        sitk.WriteImage(output_image, out_file)
        return os.path.abspath(out_file)


correct_bias('/home/yuanhm/UnetProject/brats/data/MICCAI_BraTS2020_TrainingData/test/','test.nii.gz')

 

评论 2
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

COSummer

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值