诸如扫描仪中的患者位置,扫描仪本身以及许多未知问题等因素可导致MR图像上的亮度差异。 换句话说,强度值(从黑色到白色)可以在同一组织内变化。 这被称为偏置场。 这是一种低频平滑的不良信号,会破坏MR图像。 偏置场导致MRI机器的磁场中的不均匀性。 如果未校正偏置字段将导致所有成像处理算法(例如,分段(例如,Freesurfer)和分类)输出不正确的结果。 在进行分割或分类之前,需要预处理步骤来校正偏置场的影响。
如下图所示:
python 中很多矫正偏置场的三方库,如nipype SimpleITK 都有提供,nipype 的interfaces.ants 需要单独安装ANT,速度较快,SimpleITK的
N4BiasFieldCorrection 比较耗时,以下代码示例了优先使用nipype 进行偏置场矫正,如存在问题(ANT 安装不成功等)再使用SimpleITK。本人经历如下:window 10 配置ANT 不成功,使用SimpleITK,发现不是一般的慢,代码如下:
import SimpleITK as sitk
from nipype.interfaces.ants import N4BiasFieldCorrection
import os
def correct_bias(in_file, out_file, image_type=sitk.sitkFloat64):
"""
Corrects the bias using ANTs N4BiasFieldCorrection. If this fails, will then attempt to correct bias using SimpleITK
:param in_file: nii文件的输入路径
:param out_file: 校正后的文件保存路径名
:return: 校正后的nii文件全路径名
"""
# 使用N4BiasFieldCorrection校正MRI图像的偏置场
correct = N4BiasFieldCorrection()
correct.inputs.input_image = in_file
correct.inputs.output_image = out_file
try:
done = correct.run()
return done.outputs.output_image
except IOError:
warnings.warn(RuntimeWarning("ANTs N4BIasFieldCorrection could not be found."
"Will try using SimpleITK for bias field correction"
" which will take much longer. To fix this problem, add N4BiasFieldCorrection"
" to your PATH system variable. (example: EXPORT PATH=${PATH}:/path/to/ants/bin)"))
print("ANTs N4BIasFieldCorrection could not be found."
"Will try using SimpleITK for bias field correction"
" which will take much longer. To fix this problem, add N4BiasFieldCorrection"
" to your PATH system variable. (example: EXPORT PATH=${PATH}:/path/to/ants/bin)")
input_image = sitk.ReadImage(in_file, image_type)
output_image = sitk.N4BiasFieldCorrection(input_image, input_image > 0)
sitk.WriteImage(output_image, out_file)
return os.path.abspath(out_file)
correct_bias('/home/yuanhm/UnetProject/brats/data/MICCAI_BraTS2020_TrainingData/test/','test.nii.gz')