LearningRate of DeepLearning

本文介绍了如何有效地找到合适的初始学习率,避免耗时的试错过程。一种方法是通过试探不同量级的学习率,如0.0001和0.001,观察loss变化来选择。这种方法虽然直观,但效率较低。文章探讨了更高效的学习率确定策略。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

在这篇文章中,我会讲一种非常简单却有效的方法来确定合理的初始学习率

1、这里我们关心的一个问题是初始学习率如何确定,当然有很多办法,一个比较笨的方法就是从0.0001开始尝试,然后用0.001,每个量级的学习率都去跑一下网络,然后观察一下loss的情况,选择一个相对合理的学习率,但是这种方法太耗时间了

2、

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

COSummer

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值