如果文件不在缓存中,则从URL下载文件。
参数:
tf.keras.utils.get_file(
fname, origin, untar=False, md5_hash=None, file_hash=None,
cache_subdir=‘datasets’, hash_algorithm=‘auto’, extract=False,
archive_format=‘auto’, cache_dir=None
)
fname:文件名(下载后保存的名字)。如果/path/to/file.txt指定了绝对路径,则文件将保存在该位置。
origin:文件的原始URL(下载地址)。
untar:不赞成使用“提取”。布尔值,是否应该解压缩文件
md5_hash:不赞成使用’file_hash’。验证文件的md5哈希
file_hash:下载后文件的预期哈希字符串。都支持sha256和md5哈希算法。
cache_subdir:Keras缓存目录下的子目录,用于保存文件。如 果/path/to/folder指定了绝对路径,则文件将保存在该位置。
hash_algorithm:选择哈希算法以验证文件。选项是“ md5”,“ sha256”和“自动”。默认的“自动”检测使用中的哈希算法。
extract:True尝试将文件提取为存档文件,例如tar或zip。
archive_format:尝试提取文件的存档格式。选项为“自动”,“ tar”,“ zip”和“无”。“ tar”包括tar,tar.gz和tar.bz文件。默认的“自动”为[‘tar’,‘zip’]。无或为空列表将不返回任何匹配项。
cache_dir:存储缓存文件的位置,如果为None,则默认为Keras目录。
说明:
默认情况下,URL中的文件origin下载到cache_dir ~/.keras,放在cache_subdir中datasets,并指定文件名fname。example.txt因此,文件的最终位置为 ~/.keras/datasets/example.txt。
也可以提取tar,tar.gz,tar.bz和zip格式的文件。传递哈希将在下载后验证文件。命令行编程shasum并sha256sum可以计算哈希值。
返回值:
下载文件的路径(绝对路径)
示例:
import numpy as np
import tensorflow as tf
import tensorflow_datasets as tfds
TRAIN_DATA_URL = "https://storage.googleapis.com/tf-datasets/titanic/train.csv"
TEST_DATA_URL = "https://storage.googleapis.com/tf-datasets/titanic/eval.csv"
train_file_path = tf.keras.utils.get_file("train.csv", TRAIN_DATA_URL)
test_file_path = tf.keras.utils.get_file("eval.csv", TEST_DATA_URL)
train_file_path
#输出结果
'C:\\Users\\14330\\.keras\\datasets\\train.csv'