
精排模型(单label模型)
文章平均质量分 84
精排模型(单label模型)
learner_ctr
我们正在做的事情:先在windows系统做出来一款完全语音操控的电脑软件,样子就像qq宠物一样,现在已经能做的事情是:语音唤醒、查询浏览器、保存文件、替代鼠标用语音做PPT。pengyou.chat
展开
专栏收录文章
- 默认排序
- 最新发布
- 最早发布
- 最多阅读
- 最少阅读
-
dsp平台怎么分发成百上千亿的流量?
运营团队根据规则对这些流量进行分发,以分发到外部,也就是合作的广告主(腾讯、网易等)为例。广告主对这些流量进行选择是否竞价以及竞价多少,然后回传给我们素材,我们再对多个同一个流量的多个竞价公司进行对比(同一个流量可能同时分发给多个广告主),然后选择其中之一返回给“媒体方”(媒体方那边也不止一个dsp第三方广告平台,会有多个平台来共同参与)去参与竞价,最后是否再进行展示(可能还会有自有广告流量,那就是自有广告+第三方广告的联合竞价)原创 2023-07-11 00:11:09 · 1095 阅读 · 0 评论 -
阿里巴巴线上使用的深度学习兴趣网络 DIN (三) - 论文翻译
总述:阿里巴巴拥有世界上数一数二的电子商务系统,每天的成交额高达数十亿,那么这样一个大规模的商务网站肯定要做好一件事情,那就是用户搜索的时候给用户最好的搜索结果,用户不搜索的时候结合用户的兴趣给用户最感兴趣的商品,那么他们到底用的是什么办法,这个可以从他们最新最出名的一篇这方面的文章得到,那就是“深度学习兴趣网络”!本文先从论文翻译入手,后续还会给出源码理解、以及博主的实践理解题目:......原创 2019-08-13 19:49:08 · 3280 阅读 · 0 评论 -
阿里兴趣网络DIN网络中几个关键的点(三)
总述:博主前些天对DIN网络进行了论文翻译,在翻译后,又对源码进行了研究,最后将DIN网络的重点进行了归纳,可以总结出这样几个关键点来1:DIN中的attention方法:利用本地激活层,用于自适应学习用户的历史兴趣和当前要预估的item的权重2:评价指标:gauc3:Dice激活函数:数据自使用激活函数,类似于prelu4:自适应正则:改变了以往l2正则需要耗费大量计算资源的现状......原创 2019-09-01 19:19:08 · 2542 阅读 · 4 评论 -
YoutuBe 是如何利用深度学习解决搜索推荐问题的? (一) - 论文翻译
总述:这篇文章是先从论文翻译入手,讲解下 YoutuBe 里面是如何利用深度学习做搜索推荐的。YoutuBe 的这篇文章基本上是深度学习做搜索推荐的一篇“鼻祖”文章,在那年提出来这个之后,有很多公司都在这个基础上去试验新的办法(比如阿里的DIN,就是以这个为 baseline 作为效果对照标准),或者直接采纳为公司里面的线上模型方法。本文先从论文翻译入手,后续还会给出源码理解、以及博主的实践理......原创 2019-07-22 09:03:32 · 3381 阅读 · 0 评论 -
facebook 将协同过滤加上深度学习来解决搜索推荐问题 (二) - 论文翻译
总述:facebook 在技术行业上一直和谷歌这些公司一样,处于一个领头羊的地位,在 facebook 的业务当中,搜索推荐算法一直是一个比较重要的板块,在今年他们提出来一个新的算法,就是在“深度方法”的基础上,再加上这个行业刚兴起时候的“协同过滤”!本文先从论文翻译入手,后续还会给出源码理解、以及博主的实践理解原文地址链接:https://arxiv.org/pdf/1906.0009......原创 2019-07-05 23:57:28 · 2313 阅读 · 11 评论 -
用于强化推荐系统的Top-K非政策修正方法 - 论文翻译
原文链接:https://arxiv.org/pdf/1812.02353.pdf摘要:工业推荐器系统处理非常大的动作空间–数以百万计的项目需要被推荐。而且,他们需要为数十亿用户提供服务,这些用户在任何时间都是不一样的情况,使用户状态空间变得非常复杂。幸运的是,数量巨大已记录的隐式反馈(例如,用户点击次数,停留时间)可供我们训练模型来学习。但是从记录的反馈中学习可能会因为数据的原因学习到一......原创 2019-10-24 10:49:29 · 1280 阅读 · 0 评论 -
Deep Reinforcement Learning for List-wise Recommendations
论文题目:多个item一起进行推荐的深度强化学习方法摘要:推荐系统通过给用户推荐个性化商品,在缓解信息超载或服务这些问题方面起着至关重要的作用。绝大多数传统推荐系统将推荐算法视为静态过程,并且根据固定策略提出建议。在本文中,我们提出一种新颖的推荐系统,该系统具有在与用户互动期间不断改进其策略的能力。我们将用户和推荐系统之间的顺序交互建模为马尔可夫决策过程(MDP),并且用强化学习(RL),......原创 2020-01-19 16:54:14 · 2447 阅读 · 0 评论 -
强化学习开发黑白棋、五子棋游戏
这篇文章会从以下四个方面对“强化学习开发黑白棋、五子棋游戏”进行分析一、总述二、黑白棋游戏思路三、五子棋游戏思路四、分布式训练-------------------------------------------------------------------------------------------------------------------------------......原创 2020-02-04 22:21:44 · 8470 阅读 · 4 评论 -
阿里 - 淘宝 - 精排模型发展趋势
一、DIN网络2018年7月19日,提出attention结构用在用户序列特征上,这种attention不是self-attention,而是预估item用来当做query,用户序列中的每个item作为key value阿里兴趣网络DIN网络中几个关键的点(三)_1066196847的博客-CSDN博客_din网络二、DIEN网络 2018年相对于DIN网络有这样改进点,DIN网络只做了用户序列attention这件事,DIEN首先加了一个loss,用gru计算点击序列(长度为T)的T个输.原创 2022-02-12 21:26:45 · 971 阅读 · 0 评论 -
淘宝逛逛,融合淘宝商品序列 - 逛逛场景内容序列的办法
一、难点一右侧的公式是从底往上看两个mean-pooling很简单,假设形成64维的向量 Ec1 Ei1,相乘得到Ef1,也是64维向量,这里的vanilla-attention(推荐搜索的冷启动问题_1066196847的博客-CSDN博客)vanilla-attention的重点是,Query由decoder输出,也就相当于这里的Ef1,K V由encoder输入,从Ec2 Ei2公式中看都是C或者都是I,用C来举例,那么就都是content sequence的每个item,先和原创 2022-02-04 22:28:12 · 1196 阅读 · 0 评论 -
京东 - 负反馈的pairwise方式强化学习 - Recommendations with Negative Feedback viaPairwise Deep Reinforcement Lea
论文名称:Recommendations with Negative Feedback via Pairwise Deep Reinforcement Learning论文地址:https://arxiv.org/pdf/1802.06501.pdf其他讲解论文的文章:推荐系统遇上深度学习(三十五)--强化学习在京东推荐中的探索(二) - 程序员大本营基于强化学习的推荐系统有两个优点。1:首先,在和用户交互期间,他们不断更新他们的试错策略,直到系统收敛到最优策略,生成最适合用户动态偏好的推荐原创 2022-01-30 23:24:35 · 1443 阅读 · 0 评论 -
dien论文翻译
论文地址:https://arxiv.org/pdf/1809.03672.pdf基于所有这些观察,我们提出了深度兴趣进化网络(DIEN)来提高点击率。 DIEN中有两个关键模块,一种是从历史行为中提取潜在的短暂兴趣,另一个用于建模兴趣变化形态。适当的兴趣表示是兴趣演化模型的基石。在兴趣提取层,DIEN 选择 GRU (Chung et al. 2014) 来模拟行为之间的依赖关系。遵循兴趣直接导致连续行为的原则,我们提出辅助损失,它使用下一个行为来监督学习当前隐藏状态。我们称这些隐藏状态作为利益状态的原创 2021-06-26 21:09:39 · 404 阅读 · 0 评论 -
推荐领域 - 用户未来兴趣探索办法
一、来自2021召回技术在内容推荐的实践总结-阿里云开发者社区MIND里面主要是对用户序列通过胶囊网络提取出多兴趣(多个user_embedding),然后每个user_embedding都可以召回topN个item,和这里说到的“通过兴趣之间的相似”,貌似没有什么关系二、来自阿里,长序列建模三、来自阿里的dien......原创 2022-02-13 17:39:32 · 534 阅读 · 0 评论