计算机视觉OpenCV傅里叶变换

本文深入探讨了傅里叶变换在图像处理中的关键作用,解析了高频与低频成分对图像的影响,以及如何利用低通和高通滤波器调整图像清晰度和细节。文中详细介绍了使用OpenCV和NumPy库进行傅里叶变换的操作方法。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

傅里叶变换

傅里叶变换的作用:
高频:变化剧烈的灰度分量。例如边界。

低频:变化缓慢的灰度分量,例如大海。

低通滤波器:只保留低频,会使得图像模糊

高通滤波器:只保留高频,会使得图像细节增强

  1. cv2.dft(img, cv2.DFT_COMPLEX_OUTPUT) 进行傅里叶变化

参数说明: img表示输入的图片, cv2.DFT_COMPLEX_OUTPUT表示进行傅里叶变化的方法

  1. np.fft.fftshift(img) 将图像中的低频部分移动到图像的中心

参数说明:img表示输入的图片

  1. cv2.magnitude(x, y) 将sqrt(x^2 + y^2) 计算矩阵维度的平方根

参数说明:需要进行x和y平方的数

4.np.fft.ifftshift(img) # 进图像的低频和高频部分移动到图像原来的位置

参数说明:img表示输入的图片

5.cv2.idft(img) # 进行傅里叶的逆变化

参数说明:img表示经过傅里叶变化后的图片

在这里插入图片描述
在这里插入图片描述

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值