动态规划 最长回文子串

5. 最长回文子串

问题描述

给定一个字符串 s,找到 s 中最长的回文子串。

示例

输入: "babad"
输出: "bab" 或 "aba"

输入: "cbbd"
输出: "bb"

算法思路

方法一:动态规划(DP 数组)

  1. 状态定义
    • dp[i][j] 表示子串 s[i..j] 是否为回文串。
  2. 状态转移
    • s[i] == s[j] 且子串长度 ≤ 2 时,必为回文串。
    • s[i] == s[j] 且子串长度 > 2 时,dp[i][j] = dp[i+1][j-1]
    • s[i] != s[j] 时,dp[i][j] = false
  3. 遍历顺序
    • 按子串长度从小到大遍历,确保状态转移时 dp[i+1][j-1] 已计算。
  4. 记录结果
    • dp[i][j]true 时,更新最长回文子串的起始位置和长度。

方法二:中心扩展法(空间优化)

  1. 核心思想
    遍历所有可能的回文中心(单个字符或两个字符之间),从中心向两边扩展,判断是否形成回文子串。

  2. 中心点计算

    • 长度为 n 的字符串有 2n-1 个中心:
      • n 个单字符中心(如 "a" 的中心是 a
      • n-1 个双字符中心(如 "aa" 的中心在两个 a 之间)
  3. 扩展规则

    • 设中心索引为 center(范围 [0, 2n-2]
    • 左边界 left = center / 2
    • 右边界 right = left + center % 2
    • 向两边扩展:left--right++,直到字符不匹配或越界

代码实现

方法一:动态规划(DP 数组)

class Solution {
    public String longestPalindrome(String s) {
        if (s == null || s.isEmpty()) return "";
        
        int n = s.length();
        boolean[][] dp = new boolean[n][n]; // dp[i][j] 表示 s[i..j] 是否为回文串
        int maxLen = 1;      // 最长回文子串长度
        int start = 0;       // 最长回文子串起始位置
        
        // 初始化:所有长度为 1 的子串都是回文串
        for (int i = 0; i < n; i++) {
            dp[i][i] = true;
        }
        
        // 按子串长度从小到大遍历(从 2 到 n)
        for (int len = 2; len <= n; len++) {
            for (int i = 0; i <= n - len; i++) {
                int j = i + len - 1; // 子串结束位置
                
                // 首尾字符相同
                if (s.charAt(i) == s.charAt(j)) {
                    // 子串长度 ≤ 2 或 内部子串是回文串
                    if (len == 2 || dp[i + 1][j - 1]) {
                        dp[i][j] = true;
                        
                        // 更新最长回文子串信息
                        if (len > maxLen) {
                            maxLen = len;
                            start = i;
                        }
                    }
                }
                // 首尾字符不同,不是回文串(dp[i][j] 默认 false,可省略显式赋值)
            }
        }
        return s.substring(start, start + maxLen);
    }
}

方法二:中心扩展法(空间优化)

class Solution {
    public String longestPalindrome(String s) {
        if (s == null || s.isEmpty()) return "";
        
        int n = s.length();
        int start = 0;      // 最长回文子串起始位置
        int maxLen = 1;     // 最长回文子串长度
        
        // 遍历所有可能的中心点(共 2n-1 个)
        for (int center = 0; center < 2 * n - 1; center++) {
            // 根据中心点计算左右起始位置
            int left = center / 2;
            int right = left + center % 2; // 奇数中心:left=right;偶数中心:right=left+1
            
            // 从中心向两边扩展
            while (left >= 0 && right < n && s.charAt(left) == s.charAt(right)) {
                // 计算当前回文子串长度
                int curLen = right - left + 1;
                
                // 更新最长回文子串信息
                if (curLen > maxLen) {
                    maxLen = curLen;
                    start = left;
                }
                
                // 继续扩展
                left--;
                right++;
            }
        }
        return s.substring(start, start + maxLen);
    }
}

算法分析

  • 时间复杂度
    • 两种方法均为 O(n²),动态规划嵌套两层循环,中心扩展法遍历 2n-1 个中心点。
  • 空间复杂度
    • 动态规划:O(n²),需要二维 DP 数组。
    • 中心扩展:O(1),仅使用常数空间。

算法过程

输入s = "babad"

  1. 动态规划
    • 初始化:所有单个字符为回文(dp[0][0]dp[1][1]等为 true
    • 长度 2:
      • [0,1]:“ba” → 'b'!='a' → 不更新
      • [1,2]:“ab” → 'a'!='b' → 不更新
      • [2,3]:“ba” → 'b'!='a' → 不更新
      • [3,4]:“ad” → 'a'!='d' → 不更新
    • 长度 3:
      • [0,2]:“bab” → 'b'=='b'dp[1][1]=true → 更新(maxLen=3, start=0
      • [1,3]:“aba” → 'a'=='a'dp[2][2]=true → 更新(长度相同,不覆盖)
    • 结果:"bab""aba"

输入s = "cbbd"

  1. 中心扩展
    • 中心点 0(left=0, right=0):“c”(长度 1)
    • 中心点 1(left=0, right=1):“cb” → 不匹配
    • 中心点 2(left=1, right=1):“b”(长度 1)
    • 中心点 3(left=1, right=2):“bb” → 匹配(长度 2)→ 更新(maxLen=2, start=1
    • 中心点 4(left=2, right=2):“b”(长度 1)
    • 中心点 5(left=2, right=3):“bd” → 不匹配
    • 结果:"bb"

测试用例

public static void main(String[] args) {
    Solution solution = new Solution();
    
    // 测试用例1: 标准示例
    String s1 = "babad";
    System.out.println("Test 1: " + solution.longestPalindrome(s1)); // "bab" 或 "aba"
    
    // 测试用例2: 连续相同字符
    String s2 = "cbbd";
    System.out.println("Test 2: " + solution.longestPalindrome(s2)); // "bb"
    
    // 测试用例3: 全相同字符
    String s3 = "aaaa";
    System.out.println("Test 3: " + solution.longestPalindrome(s3)); // "aaaa"
    
    // 测试用例4: 单字符
    String s4 = "a";
    System.out.println("Test 4: " + solution.longestPalindrome(s4)); // "a"
    
    // 测试用例5: 空字符串
    String s5 = "";
    System.out.println("Test 5: " + solution.longestPalindrome(s5)); // ""
    
    // 测试用例6: 长回文串
    String s6 = "forgeeksskeegfor";
    System.out.println("Test 6: " + solution.longestPalindrome(s6)); // "geeksskeeg"
}

关键点

  1. 动态规划核心
    • 状态转移依赖内部子串结果(dp[i+1][j-1])。
    • 按子串长度从小到大遍历确保依赖项已计算。
  2. 中心扩展核心
    • 统一处理奇偶长度回文串(通过 center % 2 控制)。
    • 实时计算回文长度并更新最优解。
  3. 边界处理
    • 空字符串直接返回空串。
    • 单字符字符串返回自身。

常见问题

  1. 动态规划中为什么按长度遍历?
    确保计算 dp[i][j] 时,其依赖的子问题 dp[i+1][j-1] 已解决。

  2. 中心扩展法如何避免重复计数?
    每个中心点独立扩展,自然覆盖所有不重复的回文子串。

  3. 两种方法如何选择?

    • 动态规划:思路直接,但空间占用高。
    • 中心扩展:空间效率高,代码更简洁。
最长回文子串是指在一个字符串中最长的回文子序列。回文是指正着读和倒着读都一样的字符串。动态规划是解决最长回文子串问题的一种常用方法。动态规划的思想是将问题分解成子问题,通过求解子问题的最优解来得到原问题的最优解。在最长回文子串问题中,我们可以使用一个二维数组dp[i][j]来表示从i到j的子串是否为回文子串。如果dp[i][j]为true,则表示从i到j的子串是回文子串,否则不是。我们可以通过以下步骤来求解最长回文子串: 1. 初始化dp数组,将所有dp[i][i]都设置为true,表示单个字符是回文子串。 2. 遍历字符串s,从长度为2的子串开始,依次判断每个子串是否为回文子串。如果是,则将dp[i][j]设置为true。 3. 在遍历的过程中,记录最长回文子串的长度和起始位置。 4. 最后,通过起始位置和长度来截取最长回文子串。 下面是一个示例代码,可以帮助你更好地理解动态规划求解最长回文子串的过程: class Solution { public: string longestPalindrome(string s) { int len=s.size(); if(len<2) return s; bool dp[len][len];//布尔型,dp[i][j]表示从i到j是否构成回文 int max_count=1;//最大字串的长度 int start=0;//最长字串的起始位置 for(int j=0;j<len;j++) { for(int i=0;i<j;i++) { if(s[i]!=s[j]) dp[i][j]=false; else if((j-i)<3)//(j-1)-(i+1)+1<2表示dp[i][j]的最大字串长度为1 dp[i][j]=true; else { dp[i][j]=dp[i+1][j-1]; } if((j-i+1)>max_count&&dp[i][j]) { max_count=j-i+1; start=i; } } } return s.substr(start,max_count);//截取字符串 } };
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值