5. 最长回文子串
问题描述
给定一个字符串 s
,找到 s
中最长的回文子串。
示例:
输入: "babad"
输出: "bab" 或 "aba"
输入: "cbbd"
输出: "bb"
算法思路
方法一:动态规划(DP 数组)
- 状态定义:
dp[i][j]
表示子串s[i..j]
是否为回文串。
- 状态转移:
- 当
s[i] == s[j]
且子串长度 ≤ 2 时,必为回文串。 - 当
s[i] == s[j]
且子串长度 > 2 时,dp[i][j] = dp[i+1][j-1]
。 - 当
s[i] != s[j]
时,dp[i][j] = false
。
- 当
- 遍历顺序:
- 按子串
长度
从小到大遍历,确保状态转移时dp[i+1][j-1]
已计算。
- 按子串
- 记录结果:
- 当
dp[i][j]
为true
时,更新最长回文子串的起始位置和长度。
- 当
方法二:中心扩展法(空间优化)
-
核心思想
遍历所有可能的回文中心(单个字符或两个字符之间),从中心向两边扩展,判断是否形成回文子串。 -
中心点计算
- 长度为
n
的字符串有2n-1
个中心:n
个单字符中心(如"a"
的中心是a
)n-1
个双字符中心(如"aa"
的中心在两个a
之间)
- 长度为
-
扩展规则
- 设中心索引为
center
(范围[0, 2n-2]
) - 左边界
left = center / 2
- 右边界
right = left + center % 2
- 向两边扩展:
left--
和right++
,直到字符不匹配或越界
- 设中心索引为
代码实现
方法一:动态规划(DP 数组)
class Solution {
public String longestPalindrome(String s) {
if (s == null || s.isEmpty()) return "";
int n = s.length();
boolean[][] dp = new boolean[n][n]; // dp[i][j] 表示 s[i..j] 是否为回文串
int maxLen = 1; // 最长回文子串长度
int start = 0; // 最长回文子串起始位置
// 初始化:所有长度为 1 的子串都是回文串
for (int i = 0; i < n; i++) {
dp[i][i] = true;
}
// 按子串长度从小到大遍历(从 2 到 n)
for (int len = 2; len <= n; len++) {
for (int i = 0; i <= n - len; i++) {
int j = i + len - 1; // 子串结束位置
// 首尾字符相同
if (s.charAt(i) == s.charAt(j)) {
// 子串长度 ≤ 2 或 内部子串是回文串
if (len == 2 || dp[i + 1][j - 1]) {
dp[i][j] = true;
// 更新最长回文子串信息
if (len > maxLen) {
maxLen = len;
start = i;
}
}
}
// 首尾字符不同,不是回文串(dp[i][j] 默认 false,可省略显式赋值)
}
}
return s.substring(start, start + maxLen);
}
}
方法二:中心扩展法(空间优化)
class Solution {
public String longestPalindrome(String s) {
if (s == null || s.isEmpty()) return "";
int n = s.length();
int start = 0; // 最长回文子串起始位置
int maxLen = 1; // 最长回文子串长度
// 遍历所有可能的中心点(共 2n-1 个)
for (int center = 0; center < 2 * n - 1; center++) {
// 根据中心点计算左右起始位置
int left = center / 2;
int right = left + center % 2; // 奇数中心:left=right;偶数中心:right=left+1
// 从中心向两边扩展
while (left >= 0 && right < n && s.charAt(left) == s.charAt(right)) {
// 计算当前回文子串长度
int curLen = right - left + 1;
// 更新最长回文子串信息
if (curLen > maxLen) {
maxLen = curLen;
start = left;
}
// 继续扩展
left--;
right++;
}
}
return s.substring(start, start + maxLen);
}
}
算法分析
- 时间复杂度:
- 两种方法均为 O(n²),动态规划嵌套两层循环,中心扩展法遍历 2n-1 个中心点。
- 空间复杂度:
- 动态规划:O(n²),需要二维 DP 数组。
- 中心扩展:O(1),仅使用常数空间。
算法过程
输入:s = "babad"
- 动态规划:
- 初始化:所有单个字符为回文(
dp[0][0]
、dp[1][1]
等为true
) - 长度 2:
[0,1]
:“ba” →'b'!='a'
→ 不更新[1,2]
:“ab” →'a'!='b'
→ 不更新[2,3]
:“ba” →'b'!='a'
→ 不更新[3,4]
:“ad” →'a'!='d'
→ 不更新
- 长度 3:
[0,2]
:“bab” →'b'=='b'
且dp[1][1]=true
→ 更新(maxLen=3, start=0
)[1,3]
:“aba” →'a'=='a'
且dp[2][2]=true
→ 更新(长度相同,不覆盖)
- 结果:
"bab"
或"aba"
- 初始化:所有单个字符为回文(
输入:s = "cbbd"
- 中心扩展:
- 中心点 0(
left=0, right=0
):“c”(长度 1) - 中心点 1(
left=0, right=1
):“cb” → 不匹配 - 中心点 2(
left=1, right=1
):“b”(长度 1) - 中心点 3(
left=1, right=2
):“bb” → 匹配(长度 2)→ 更新(maxLen=2, start=1
) - 中心点 4(
left=2, right=2
):“b”(长度 1) - 中心点 5(
left=2, right=3
):“bd” → 不匹配 - 结果:
"bb"
- 中心点 0(
测试用例
public static void main(String[] args) {
Solution solution = new Solution();
// 测试用例1: 标准示例
String s1 = "babad";
System.out.println("Test 1: " + solution.longestPalindrome(s1)); // "bab" 或 "aba"
// 测试用例2: 连续相同字符
String s2 = "cbbd";
System.out.println("Test 2: " + solution.longestPalindrome(s2)); // "bb"
// 测试用例3: 全相同字符
String s3 = "aaaa";
System.out.println("Test 3: " + solution.longestPalindrome(s3)); // "aaaa"
// 测试用例4: 单字符
String s4 = "a";
System.out.println("Test 4: " + solution.longestPalindrome(s4)); // "a"
// 测试用例5: 空字符串
String s5 = "";
System.out.println("Test 5: " + solution.longestPalindrome(s5)); // ""
// 测试用例6: 长回文串
String s6 = "forgeeksskeegfor";
System.out.println("Test 6: " + solution.longestPalindrome(s6)); // "geeksskeeg"
}
关键点
- 动态规划核心:
- 状态转移依赖内部子串结果(
dp[i+1][j-1]
)。 - 按子串长度从小到大遍历确保依赖项已计算。
- 状态转移依赖内部子串结果(
- 中心扩展核心:
- 统一处理奇偶长度回文串(通过
center % 2
控制)。 - 实时计算回文长度并更新最优解。
- 统一处理奇偶长度回文串(通过
- 边界处理:
- 空字符串直接返回空串。
- 单字符字符串返回自身。
常见问题
-
动态规划中为什么按
长度
遍历?
确保计算dp[i][j]
时,其依赖的子问题dp[i+1][j-1]
已解决。 -
中心扩展法如何避免重复计数?
每个中心点独立扩展,自然覆盖所有不重复的回文子串。 -
两种方法如何选择?
- 动态规划:思路直接,但空间占用高。
- 中心扩展:空间效率高,代码更简洁。